Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-25T03:33:57.076Z Has data issue: false hasContentIssue false

High Mobility Nitrides

Published online by Cambridge University Press:  21 March 2011

K. Scott
Affiliation:
Physics Department, Macquarie University, Sydney NSW 2109, Australia
A. Butcher
Affiliation:
Physics Department, Macquarie University, Sydney NSW 2109, Australia
Marie Wintrebert-Fouquet
Affiliation:
Physics Department, Macquarie University, Sydney NSW 2109, Australia
Patrick P.–T. Chen
Affiliation:
Physics Department, Macquarie University, Sydney NSW 2109, Australia
Trevor L. Tansley
Affiliation:
Physics Department, Macquarie University, Sydney NSW 2109, Australia
Surapon Srikeaw
Affiliation:
Material Physics Division, Department of Physics, Prince of Songkla University, Hat-Yai, Songkla, 90112, Thailand.
Get access

Abstract

The highest mobility nitrides ever grown were indium nitride polycrystalline thin films. The original reactive ion sputtering unit used to produce those films is still in existence and has been substantially upgraded. In this paper we describe some of the parameters that are important for high purity indium nitride growth, while providing the most recent results for films grown with the upgraded system. A long lag time (greater than 100 hours of growth time) has been observed before obtaining stable material properties for a given set of growth conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pearton, S. J. and Ren, F., Adv. Mater. 12, 1571 (2000).Google Scholar
2. Foutz, B. E., O'leary, S. K., Shur, M. S. and Eastman, L. F., J. Appl. Phys. 85, 7727 (1999).Google Scholar
3. O'leary, S. K., Foutz, B. E., Shur, M. S., Bhapkar, U. V. and Eastman, L. F., J. Appl. Phys. 83, 826 (1998).Google Scholar
4. Tansley, T. L. and Foley, C. P., Electron Lett. 20, 1066 (1984).Google Scholar
5. Tansley, T L and Goldys, E M ’Electrical Transport Properties of InN,” Gallium Nitride and Related Semiconductors, ed. Edgar, J H and Strite, S (INSPEC, London, 1999), pp 129134.Google Scholar
6. Saito, Y., Teraguchi, N., Suzuki, A., Araki, T. and Nanishi, Y., Jpn. J. Appl. Phys. 40, L90 (2001).Google Scholar
7. Private communication with Schaff, W. J., Cornell University, Ithaca, New York.Google Scholar
8 Yamamoto, A., Shin-ya, T., Sugiura, T. and Hashimoto, A., J. Crystal Growth 189/190, 461 (1998).Google Scholar
9. Foley, C. P., “Indium Nitride Polycrystalline Thin Films,” PhD Thesis (Macquarie University, Sydney, 1984).Google Scholar
10. Foley, C. P. and Tansley, T. L., Surf. Sci. 22/23, 663 (1985).Google Scholar
11. Tansley, T. L. and Foley, C. P., J. Appl. Phys. 59, 3241 (1986).Google Scholar
12. Lu, H., Schaff, W. J., Hwang, J., Wu, H., Yeo, W., Pharkya, A. and Eastman, L. A., Appl. Phys. Lett. 77, 2548 (2000).Google Scholar
13. Urbach, F., Phys. Rev. 92, 1324 (1953).Google Scholar
14. Tansley, T. L., Neely, D. F. and Foley, C. P., Phys. Stat. Sol. A 77, 491 (1983).Google Scholar
15. Miragliotta, J. A., “Optical Functions of InN” Properties of Group III Nitrides, ed. Edgar, J. H. (INSEPC, London, 1994), pp 195199.Google Scholar