Hostname: page-component-5c6d5d7d68-pkt8n Total loading time: 0 Render date: 2024-08-22T22:18:39.628Z Has data issue: false hasContentIssue false

Heterogeneous Strain Relaxation in GaAs on Si (100)

Published online by Cambridge University Press:  28 February 2011

A. Freundlich
Affiliation:
Laboratoire de Physique du Solide et Energie Solaire, CNRS, Pare de Sophia-Antipolis, 06560 VALBONNE (France)
G. Neu
Affiliation:
Laboratoire de Physique du Solide et Energie Solaire, CNRS, Pare de Sophia-Antipolis, 06560 VALBONNE (France)
A. Leycuras
Affiliation:
Laboratoire de Physique du Solide et Energie Solaire, CNRS, Pare de Sophia-Antipolis, 06560 VALBONNE (France)
R. Carles
Affiliation:
Laboratoire de Physique des Solides, Université Paul Sabatier, 31062 TOULOUSE (France)
C. Verie
Affiliation:
Laboratoire de Physique du Solide et Energie Solaire, CNRS, Pare de Sophia-Antipolis, 06560 VALBONNE (France)
Get access

Abstract

Residual stress in MOVPE grown GaAs on (100)Si substrates is investigated using Haman spectroscopy, X-ray diffraction, low temperature photoluminescence and photoluminescence excitation spectroscopy experiments. At room temperature, 2 µm-thick GaAs/Si is found to be under biaxial (100) tensile stress of X = 1.8 ± 0.3 kbar, near the epilayer surface. The stress magnitude decreases as the distance from interface decreases. PL and PLE studies on post-growth thermally annealed GaAs/Si reveal coexistence of unstrained and strained GaAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) See, for example “Heteroepitaxy on Silicon II”, MRS Symposia Proc., edited by Fan, J.C.C., Phillips, J.M. and Tsaur, B.Y., Material Research Society, Pittsburg, PA (1987).Google Scholar
[2] Tiong, K.K., Amirtharaj, P.M., Pollak, F.H. and Aspnes, D.E. Appl. Phys. Lett. 44, 122 (1984).Google Scholar
[3] Cerdeira, F., Buchenauer, C.J., Pollak, F.H. and Cardona, M., Phys. Rev. B5, 580 (1972).Google Scholar
[4) Sood, A.K., Anastassakis, E. and Cardona, M., Phys. Stat. Sol. (b) 129, 505 (1985).Google Scholar
[5] Landa, G. and Carles, R.. Private Communication.Google Scholar
[6] Freundlich, A., Leycuras, A., Grenet, J.C., Vèrié, C. and Huong, P.V. Appl. Phys. Lett. 51, 1352 (1987).Google Scholar
[7] Yao, T., Okada, Y., Kawanami, H., Matsui, S., Imagawa, A. and Ichida, K. in “Heteroepitaxy on Silicon II”, edited by Fan, J.C.C., Phillips, J.M., Tsaur, B.Y., MAS, Pittsburgh, PA (1987).Google Scholar
[8) as determined from X-ray FWHM, for more details, see e.g. Ref. [6].Google Scholar
[9] Freundlich, A., Grenet, J.C., Neu, G., Leycuras, A. and Vèrié, C., Appl. Phys. Lett. 52 1976 (1988)Google Scholar
[10] Zemon, S., Shastry, S.K., Norris, P., Jagannath, J. and Lambert, G., Solid State Commun. 58, 457 (1986).CrossRefGoogle Scholar
[11] Chandrasekhar, M. and Pollak, F.H., Phys. Rev. B 15, 2121 (1977).Google Scholar
[12] Bhargava, R.N. and Nathan, M.I., Phys. Rev. 161, 695 (1967).CrossRefGoogle Scholar
[13] Zemon, S., Jannagath, C., Koteles, E.S., Shastry, S.K., Norris, P., Lambert, O., Chaudhury, A.N.M. and Armiento, C.A., “Int. Symp. GaAs and Related Compounds”, Las Vegas, Nevada (1986).Google Scholar
[14] Yacobi, B.G., Zemon, S., Norris, P., Jagannath, C. and Sheldon, P., Appl. Phys. Lett. 51, 2236 (1987).CrossRefGoogle Scholar