Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-23T21:35:05.421Z Has data issue: false hasContentIssue false

Heterogeneous Reactions of GaAs Quantum Dots with Organometallic Precursors

Published online by Cambridge University Press:  28 February 2011

Winston A. Saunders
Affiliation:
Applied Physics, M. S. 128–95 California Institute of Technology, Pasadena, CA 91125
Robert B. Lee
Affiliation:
Applied Physics, M. S. 128–95 California Institute of Technology, Pasadena, CA 91125
Harry A. Atwater
Affiliation:
Applied Physics, M. S. 128–95 California Institute of Technology, Pasadena, CA 91125
Kerry J. Vahala
Affiliation:
Applied Physics, M. S. 128–95 California Institute of Technology, Pasadena, CA 91125
Richard C. Flagan
Affiliation:
Chemical Engineering, M. S. 210–41 California Institute of Technology, Pasadena, CA 91125
Peter C. Sercel
Affiliation:
Applied Physics, M. S. 128–95 California Institute of Technology, Pasadena, CA 91125
Get access

Abstract

We report recent results on the homogeneous nucleation of GaAs quantum dots from organometallic precursors and subsequent heterogeneous nucleation of epitaxial regrowth of GaAs on the clusters. We find that clusters onto which we have regrown GaAs exhibit a much higher degree of faceting, whereas particles subject to che same thermal cycles but onto which no new GaAs has been grown, though crystalline, have highly irregular shapes. These results suggest that epitaxial regrowth exhibits selectivity in the growth rates on the various crystal facets akin to that found in bulk samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sercel, P. C., Saunders, W. A., Vahala, K. J., Atwater, H. A., Flagan, R. C., Appl. Phys. Lett., 61, 696 (1992).Google Scholar
2. Schmitt-Rink, S., Miller, D. A. B., Chemia, D. S., Phys. Rev. B 35, 81138124 (1987).Google Scholar
3. Asai, H., J. Cryst. Growth 80, 425 (1987).Google Scholar
4. Jwang, J., Flaxgan, R. C., and Gregory, O. J., Appl. Phys. Letts. 49, 82 (1986).Google Scholar
5. Hung, C. H., Miquel, P. F., and Katz, J. L., J. Mat. Res. 7, 1861 (1992),Google Scholar
Hung, C. H., Miquel, P. F., and Katz, J. L., J. Mat. Res. 7, 1870 (1992).Google Scholar
6. Hersee, S., Barbier, E., and Blondeau, R., J. Cryst. Growth 77, 310 (1986).Google Scholar
7. Goldstein, A. N., Echer, C. M., and Alivisatos, A. P., Science 256, 1425 (1992).Google Scholar