Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T08:25:44.679Z Has data issue: false hasContentIssue false

Heteroepitaxy Between Lattice Mismatched Materials with Van Der Waals Interactions

Published online by Cambridge University Press:  28 February 2011

Atsushi Koma*
Affiliation:
University of Tokyo, Department of Chemistry Bunkyo ku, Tokyo 113, Japan
Get access

Abstract

The lattice matching condition encountered usually in the heteroepitaxial growth has been proved to be relaxed drastically, if one uses the interface having van der Waals nature. Such interface can be realized on a cleaved face of a layered material or a quasi-one dimensional material and on a surface of a dangling-bond-terminated three dimensional material. Various kinds of heterostructures, which cannot be made by conventional growth methods, can be fabricated by using a variety of layered transition metal dichalcogenides, in which there exist superconducting, metallic, semiconducting or insulating layered materials. Moreover those heterostructures have been found to be grown on such an ordinary three-dimensional material as GaAs, if the dangling bonds on its surface are terminated by suitable atoms.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Koma, A., Sunouchi, K. and Miyajima, T., Microelectronic Engng., 2, 129 (1984)Google Scholar
[2] Koma, A., Sunouchi, K. and Miyajima, T., J. Vac. Sci. Technol., B3, 724 (1985)Google Scholar
[3] Koma, A., Sunouchi, K. and Miyajima, T., Proc. 17th Intern. Conf. Phys. Semiconductors, San Francisco, 1984 (Springer-Verlag, New York, 1985) p. 1465.Google Scholar
[4] Koma, A., Proc. ist Intern. Conf. Electronic Materials, Tokyo, 1988 (1989, Materials Research Society, Pittsburgh), p. 105.Google Scholar
[5] Osbourn, G. C., J. Appl. Phys., 53, 1586 (1982).Google Scholar
[6] Shimada, T., Yamamoto, H., Saiki, K. and Koma, A., to be publishedGoogle Scholar
[7] Saiki, K., Ueno, K., Shimada, T. and Koma, A., J. Crystal Growth, 95, 603 (1989).Google Scholar
[8] Ueno, K., Saiki, K., T. Shimada and Koma, A., J. Vac. Sci. Technol. A8, 68 (1990).Google Scholar
[9] Oigawa, H., Fan, J.-F., Nannichi, Y., Ando, K., Saiki, K. and Koma, A., Jpn. J. Appl. Phys., 28, L340, (1989).Google Scholar
[10] Ueno, K., Shimada, T. and Saiki, K. and Koma, A., Appl. Phys. Lett., 56, 327 (1990).Google Scholar
[11] Saiki, K., Sato, Y. and Koma, A., Jpn. J. Appl. Phys., 28, L134 (1989).Google Scholar
[12] Lee, H.C., Ishiwara, H., Kanemaru, S. and Furukawa, S., Jpn. J. Appl. Phys., 26, L1734 (1987).Google Scholar
[13] Koma, A., Saiki, K. and Sato, Y., Appl. Surface Sci., 41/42, 451 (1989).Google Scholar
[14] Farrow, R.F.C., Sulllivan, P.W., Williams, G.M., Jones, G.R. and Camellon, D.C., J. Vac. sci. Technol., 19, 415 (1981).Google Scholar