Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-19T17:04:20.407Z Has data issue: false hasContentIssue false

Growth via Mocvd and Characterization Of GaN and AlxGa1−xN(0001) Alloys for Optoelectronic and Microelectronic Device Applications

Published online by Cambridge University Press:  10 February 2011

Robert F. Davis
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27607–7907
T. W. Weeks Jr.
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27607–7907
M. D. Bremser
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27607–7907
K. S. Ailey
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27607–7907
W. G. Perry
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27607–7907
Get access

Abstract

Monocrystalline GaN(0001) thin films have been grown at 950°C on high-temperature, 100 nm thick, monocrystalline AIN(0001) buffer layers previously deposited at 1100°C on α(6H)-SiC(0001)si substrates via MOCVD in a cold-wall, vertical, pancake-style reactor. AlxGa1−xN films (0≤x≤1) were grown directly on the same SiC surface at 1100°C. Abrupt heterojunctions among the alloy composition were demonstrated. All films possessed a smooth surface morphology and were free of low-angle grain boundaries and associated oriented domain microstructures. Double-crystal x-ray rocking curve measurements for the GaN(0004) reflection for simultaneously deposited 1.4 μm films revealed FWHM values of 58 and 151 arcsec for materials grown on on-axis and off-axis material, respectively. The corresponding values for the AIN(0004) buffer layers were ≈ 200 and ≈400 arc sec, respectively. A similar relationship was found for the alloys for 0≤x≤0.2. The PL spectra of the GaN films deposited on both vicinal and on-axis substrates revealed strong bound exciton emission with a FWHM value of 4 meV. The spectra of these films on the vicinal substrates were shifted to a lower energy, indicative of films containing residual tensile stresses. A peak believed to be associated with free excitonic emission was also observed in each on-axis spectrum. Rutherford backscattering, Auger depth profiling and energy dispersive analysis were used to determine the AIN/GaN ratios in the alloys. Cathodoluminescence of solutions with x<0.5 exhibited strong near band edge emission with a FWHM as low as 31 meV. The band gaps were determined via spectral ellipsometry. Undoped GaN and A1xGa1−xN films were too resistive for accurate Hall-effect measurements. Controlled n-type Si-doping in GaN and AlxGa1−xN (for x≤0.4) was achieved for net carrier concentrations ranging from approximately 2×1017 cm−3 to 2×1019 (AlxGa1−xN) or to l × 1020 (GaN) cm−3. Mg-doped, p-type GaN was achieved with nA−nD = 3 × 1017 cm−3, p ≈ 7 Ω cm and μ ≈ 3 cm2/V·s.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Haase, M.A., Qui, J., DePuydt, J.M. and Cheng, H., Appl. Phys. Lett. 59, 1272 (1991).Google Scholar
2. Jeon, H., Ding, J., Nurmikko, A.V., Xie, W., Grillo, D.C., Kobayashi, M., Gunshor, R.L., Hua, G.C. and Otsuka, N., Appl. Phys. Lett. 60, 2045 (1992).Google Scholar
3. Xie, W., Grillo, D.C., Gunshor, R.L., Kobayashi, M., Jeon, H., Ding, J., Nurmikko, A.V., Hua, G.C. and Otsuka, N., Appl. Phys. Lett. 60, 1999 (1992).Google Scholar
4. Strite, S. and Morkoc, H., J. Vac. Sci. Technol. B 10, 1237 (1992).Google Scholar
5. Gershenzon, M., Wang, D.E., Ta, L., in Proceedings 1981 International Optoelectronics Workshop, edited by Chang, D.Y. (National Cheng Kung University, Tainan, Taiwan 1981), 139.Google Scholar
6. Davis, R.F., Physica B 185, 1 (1993).Google Scholar
7. Yoshida, S., Misawa, S. and Gonda, S., Appl. Phys. Lett. 42, 427 (1983).Google Scholar
8. Yoshida, S., Misawa, S. and Gonda, S., J. Vac. Sci. & Technol. B 1, 250 (1983).Google Scholar
9. Amano, H., Sawaki, N., Akasaki, I. and Toyoda, Y., Appl. Phys. Lett. 48, 353 (1986).Google Scholar
10. Amano, H., Akasaki, I., Hiramatsu, K., Koide, N. and Sawaki, N., Thin Solid Films 163, 415 (1988).Google Scholar
11. Akasaki, I., Amano, H., Koide, Y., Hiramatsu, K. and Sawaki, N., J. Cryst. Growth 98, 209 (1989).Google Scholar
12. Khan, M.A., Kuznia, J.N., Olson, D.T. and Kaplan, R., J. Appl. Phys. 73, 3108 (1993).Google Scholar
13. Kuznia, J.N., Khan, M.A., Olson, D.T., Kaplan, R. and Freitas, J., J. Appl. Phys. 73, 4700 (1993).Google Scholar
14. Qian, W., Skowronski, M., Graef, M. De, Doverspike, K., Rowland, L.B. and Gaskill, D.K., Appl. Phys. Lett. 66, 1252 (1995).Google Scholar
15. Hiramatsu, K., Itoh, S., Amano, H., Akaski, I., Kuwano, N., Shiraishi, T. and Oki, K., J. Crystal Growth 115, 628 (1991).Google Scholar
16. Nakamura, S., Jpn. J. Appl. Phys. 30, L1705 (1991).Google Scholar
17. Kuwano, N., Shiraishi, T., Koga, A., Oki, K., Hiramatsu, K., Amano, H., Itoh, K. and Akasaki, I., J. Cryst. Growth, 115, 381 (1991).Google Scholar
18. Chernov, A.A., Modem Crystallography III: Crystall Growth (Springer, Berlin, 1984) 283.Google Scholar
19. Nakamura, S., Jpn. J. Appl. Phys. 30, 1620 (1991).Google Scholar
20. Wickenden, A.E., Wickenden, D.K. and Kistenmacher, T.J., J. Appl. Phys. 75, 5367 (1994).Google Scholar
21. Wickenden, D.K., Miragliotta, J.A., Bryden, W.A. and Kistenmacher, T.J., J. Appl. Phys. 75, 7585 (1994).Google Scholar
22. Powell, R.C., Tomasch, G.A., Kim, Y.-W., Thornton, J.A. and Greene, J.E., Mater. Res. Soc. Sym Proc. 162, 525 (1990).Google Scholar
23. Born, P.J. and Robertson, D.S., J. Mater. Sci. 15, 3,003 (1980).Google Scholar
24. Matsubara, K. and Takagi, T., Jpn. J. Appl. Phys. 22, 511 (1982).Google Scholar
25. Sitar, Z., Paisley, M.J., Yan, B. and Davis, R.F., Mater. Res. Soc. Sym Proc. 162, 537 (1990).Google Scholar
26. Cree Research, Inc., 2810 Meridian Parkway, Suite 176, Durham, NC 27713Google Scholar
27. Weeks, T.W. Jr.,, Bremser, M.D., Ailey, K.S., Carlson, E., Perry, W.G. and Davis, R.F. (unpublished).Google Scholar
28. Weeks, T.W. Jr.,, Bremser, M.D., Ailey, K.S., Carlson, E., Perry, W.G., Smith, L.L., Freitas, J.A., Jr., Davis, R.F., Second Nitride Workshop, St. Louis, MO, October 17-18 (1994).Google Scholar
29. Benjamin, M.C., Wang, C., Davis, R.F. and Nemanich, R.J., Appl. Phys. Lett. 64, 3288 (1994).Google Scholar
30. Amano, H., Tanaka, T., Kunii, Y., Kato, K., Kim, S.T. and Akasaki, I., Appl. Phys. Lett. 64, 1377 (1994).Google Scholar
31. Amano, H., Kito, M., Hiramatsu, K. and Akasaki, I., Jpn. J. Appl. Phys. 28, L2112 (1989).Google Scholar
32. Nakamura, S., Iwasa, N., Senoh, M. and Mukai, T., Jpn. J. Appl. Phys. 31, 1258 (1992).Google Scholar
33. Vechten, J.A. Van, Zook, J.D., Horning, R.D. and Goldenberg, B., Jpn. J. Appl. Phys. 31, 3662 (1992).Google Scholar
34. Zavada, J.M., Wilson, R.G., Abernathy, C.R. and Pearton, S.J., Appl. Phys. Lett. 64, 2724 (1994).Google Scholar
35. Tanaka, T., Watanabe, A., Amano, H., Kobayashi, Y., Akasaki, I., Yamazaki, S. and Koide, M., Appl. Phys. Lett. 65, 593 (1994).Google Scholar
36. Kesamanly, F. P., Soy. Phys. Semicond. 8, 147 (1974).Google Scholar
37. Pankove, J. I. and Bloom, S., RCA Rev. 36, 163 (1975).Google Scholar
38. Davis, R. F., et al., J. Mater. Sci. Eng. B 1, 77 (1988).Google Scholar
39. Pankove, J. I., in Diamond. Silicon Carbide and Related Wide Bandgap Semiconductor Materials, edited by Glass, J. T., Messier, R. F., and Fujimori, N., (Mater. Res. Soc. Sym Proc. vol.116, Pittsburgh, PA, 1990), 515–524.Google Scholar
40. Davis, R. F., Proc. IEEE 79, 702 (1991).Google Scholar
41. Morkoç, H., et al. J. Appl. Phys. 76, 1363 (1994).Google Scholar
42. Edgar, J. H., J. Mater. Res. 7, 235 (1992).Google Scholar
43. Henini, M., Microelectron. J. 23, 500 (1992).Google Scholar
44. Morkoç, H., Strite, S., Gao, G. B., Lin, M. E., Sverdlov, B. and Burns, M., J. Appl Phys. 76, 1363 (1994).Google Scholar
45. Tanaka, S., Kern, R. S., and Davis, R. F., Appl. Phys. Lett. 66, 37 (1995).Google Scholar
46. Khan, M.R.H., Koide, Y., Itoh, H., Sawaki, N. and Akasaki, I., Solid State Commun. 60, 509 (1986).Google Scholar