Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-19T01:51:08.254Z Has data issue: false hasContentIssue false

Growth of YSZ and Y2O3 Films on SI(100) by Solid State Epitaxy

Published online by Cambridge University Press:  26 February 2011

J. Wecker
Affiliation:
Siemens AG, Research Laboratory, D-8520 Erlangen, Germany
TH. Matthee
Affiliation:
Siemens AG, Research Laboratory, D-8520 Erlangen, Germany University of Augsburg, Institute of Physics, D-8200 Augsburg, Germany
H. Behner
Affiliation:
Siemens AG, Research Laboratory, D-8520 Erlangen, Germany
G. Friedl
Affiliation:
Siemens AG, Research Laboratory, D-8520 Erlangen, Germany University of Augsburg, Institute of Physics, D-8200 Augsburg, Germany
K. Samwer
Affiliation:
University of Augsburg, Institute of Physics, D-8200 Augsburg, Germany
Get access

Abstract

Single crystalline YSZ and Y2O3 thin films are grown on Si(100) by e-beam evaporation. The amorphous S1O2 surface layer is removed in-situ by initially growing at low oxygen partial pressures in the case of YSZ or by first evaporating metallic Y for the growth of Y2O3. Epitaxy occurs by a solid state reaction after the SiO2 has been reduced by metallic Zr or Y. For Si/YSZ/Y2O3 the growth is cube on cube while in the case of Si/Y2O3/YSZ the oxide layers grow twinned in (110) orientation. XPS analysis and AES depth profiles reveal the reoxidation of the Si during further growth. Critical temperatures of 90 K and high current densities of 3.2×106 A/cm2 are measured on 150 nm thick YBCO films on SOS/YSZ/Y2O3 proving the excellent quality of the YBCO and the underlying buffer layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] see e.g.: Tate, J., Berberich, P., Dietsche, W. and Kinder, H., J. Less-Common Met. 151, 925 (1989).Google Scholar
[2] Fork, D. K., Fenner, D. B., Barton, R. W., Phillips, J. M., Connell, G. A. N., Boyce, J. B. and Geballe, T. H., Appl. Phys. Lett. 57, 1161 (1990).Google Scholar
[3] Myoren, H., Nishiyama, Y., Kai, Y., Yamanaka, Y., Osaka, Y. and Nichiyama, F., Jap. J. Appl. Phys. 29, L955 (1990).Google Scholar
[4] Inoue, T., Yamamoto, Y., Koyama, S., Suzuki, S. and Ueda, Y., Appl. Phys. Lett. 56, 14 (1990).Google Scholar
[5] Fenner, D. B., Biegelson, D. K. and Bringans, R. D., J. Appl. Phys. 66, 419 (1989).Google Scholar
[6] Behner, H., Wecker, J. and Heines, B., Proc. International Conference on Advanced Materials, Strasbourg, May 1991, in print.Google Scholar
[7] Tabe, M., J. Appl. Phys. 21, 534 (1982).Google Scholar
[8] Lubig, A., Buchal, Ch., Guggi, D., Jia, C. L. and Stritzker, B., Thin Solid Films, in print.Google Scholar
[9] Behner, H., Wecker, J. and Matthee, Th., Surf. Interface Anal., in print.Google Scholar
[10] Matthee, Th., Wecker, J., Friedl, G., Behner, H., Eibl, O. and Samwer, K., Appl. Phys. Lett., submitted.Google Scholar
[11] Bardal, A., Zwerger, M., Eibl, O., Wecker, J. and Matthee, Th., Appl. Phys. Lett., submitted.Google Scholar
[12] Fork, D. K., Ponce, F. A., Tramontana, J. C., Newman, N., Phillips, J. M. and Geballe, T. H., Appl. Phys. Lett. 58, 2432 (1991).Google Scholar