Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-11T20:59:00.126Z Has data issue: false hasContentIssue false

Growth of Si1−xGex, Strained Layers Using Atmospheric-Pressure CVD

Published online by Cambridge University Press:  22 February 2011

F. Namavar
Affiliation:
Spire Corporation, Bedford, MA
J. M. Manke
Affiliation:
Spire Corporation, Bedford, MA
E. P. Kvam
Affiliation:
Purdue University, West Lafayette, IN
M. M. Sanfacon
Affiliation:
Purdue University, West Lafayette, IN
C. H. Perry
Affiliation:
Northeastern University, Boston, MA
N. M. Kalkhoran
Affiliation:
Spire Corporation, Bedford, MA
Get access

Abstract

The objective of this paper is to demonstrate the epitaxial growth of SiGe strained layers using atmospheric-pressure chemical vapor deposition (APCVD). We have grown SiGe layers with various thicknesses and Ge concentrations at temperatures ranging from 800–1000°C. The samples were studied using a variety of methods, including transmission electron microscopy (TEM), high resolution X-ray diffraction (HRXRD) and Raman spectroscopy (RS). Both HRXRD and RS results indicate that samples with about 10% Ge and a thickness of about 1000 Å are almost fully strained. TEM analyses of these samples indicate a film defect density less than 105/cm2. SIMS results indicate that the oxygen concentration in the epitaxial layers is lower than that found in CZ substrates.

Our analyses also indicate that as-grown epitaxial Ge layers several microns thick have a defect density less than 107/cm2. The relatively low defect density in both SiGe and Ge layers grown on Si has been attributed to far higher dislocation glide velocity at the relatively elevated growth temperatures employed in CVD and to very good growth cleanliness.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bean, J. C., Mat. Res. Soc. Symp. Proc. 116, 479 (1988).CrossRefGoogle Scholar
2. Bean, J. C., Feldman, L. C., Fiory, A. T., Nakahara, S., and Robinson, I. K., J. Vac. Sci. Technol. A2, 436 (1984).CrossRefGoogle Scholar
3. Bean, J. C., Sheng, T. T., Feldman, L. C., Fiory, A. T., and Lynch, R. T., Appl. Phys. Lett. 44 (1), 102 (1984).CrossRefGoogle Scholar
4. Hull, R., Bean, J. C., Leibenguth, R. E., and Werder, D. J., J. Appl. Phys. 65 (12), 4723 (1989).CrossRefGoogle Scholar
5. Hirayama, H., Hiroi, M., Koyama, K., and Tatsumi, T., Appl. Phys. Lett. 56 (26), 2646 (1990).Google Scholar
6. Racanelli, M. and Greve, D. W., Appl. Phys. Lett. 56 (25), 2524 (1990).CrossRefGoogle Scholar
7. Patton, G. L., Comfort, J. H., Meyerson, B. S., Crabbe, E. F., Scilla, G. J., DeFresart, E., Stork, J. M., Sun, J. Y. C., Harame, D. L., and Burghartz, J. N., IEEE Elec. Dev. Lett. 11 (4), 171 (1990).CrossRefGoogle Scholar
8. Jung, K. H., Kim, Y. M., and Kwong, D. L., Appl. Phys. Lett. 56 (18), 1775 (1990).CrossRefGoogle Scholar
9. Hoyt, J. L., Noble, D. B., Gnani, T., King, C. A., Gibbons, J. F., Scott, M. P., Laderman, S. S., Nauka, K., Turner, J. E., Rosner, S. J., and Kamins, T. I., Proc. of the 2nd Inter. Conf. on Elec. Mat. (ICEM'90), 551 (1990).Google Scholar
10. Gronet, C. M., King, C. A., Opyd, W., Gibbons, J. F., Wilson, S. D., and Hull, R., J. Appl. Phys. 61, 2407 (1987).CrossRefGoogle Scholar
11. Paine, D. C., Howard, D. J., Stoffel, N. G. and Horton, J. A., J. Mater. Res. 5, 1023 (1990).CrossRefGoogle Scholar
12. Lockwood, D. J., Baribeau, J. M., and Timbrell, P. Y., J. Appl. Phys. 68 (8), 3049 (1989).CrossRefGoogle Scholar
13. Houghton, D. C., Perovic, D. D., Baribeau, J. -M., and Weatherly, G. C., J. Appl. Phys. 67 (4), 1850 (1990).CrossRefGoogle Scholar
14. Soref, R. A., Namavar, F., Lorenzo, J. P., Optics Lett. 15 (5), 270 (1990).CrossRefGoogle Scholar
15. Namavar, F., Cortesi, E., Manke, J. M., Kalkhoran, N. M., Johnson, E. A., DeSilvestre, O. A., Blythe, M. C., Johnson, M. H., and Perry, D. L., Proc. of the 2nd Inter. Conf. on Elec. Mat. (ICEM'90), 403 (1990).Google Scholar
16. Namavar, F., Kvam, E. P., Perry, D. L., Cortesi, E., Kalkhoran, N. M., and Manke, J. M., Mat. Res. Soc. Extended Abst. (EA-21), 249 (1990).Google Scholar
17. Rowell, N., National Research Council, Canada, private communication.Google Scholar
18. Fatemi, M. and Stahlbush, R. E., Appl. Phys. Lett. 58 (8), 825 (1991).CrossRefGoogle Scholar
19. Perry, C. H., Lu, F., Liu, D. W., and Alzyab, B., J. Raman Spectr. 21, 577 (1990);CrossRefGoogle Scholar
Anastasakis, E. M. and Perry, C. H., Solid State Comm., 9, 407 (1971).CrossRefGoogle Scholar
20. Brya, W. J., Solid State Comm., 12, 253 (1973);CrossRefGoogle Scholar
Renucci, M. A., Renucci, J. B., and Cardona, M., Light Scattering Solids (ed. Balkanski, M., Flammarion, Paris, 1971), p.326.Google Scholar
21. Cerdiera, F., Pinczuk, A., Bean, J. C., Batlogg, B., and Wilson, B. A., Appl. Phys. Lett. 45, 1138 (1984).CrossRefGoogle Scholar
22. Kvam, E. P., Eaglesham, D. J., Maher, D. M., Humphreys, C. J., Bean, J. C., Green, G. S., and Tanner, B. K., Mat. Res. Soc. Symp. Proc. 104, 623 (1988).CrossRefGoogle Scholar
23. Kvam, E. P., and Namavar, F., Appl. Phys. Lett., accepted March 1991.Google Scholar