Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T07:15:58.887Z Has data issue: false hasContentIssue false

Growth of MgO by Metal-Organic Molecular Beam Epitaxy

Published online by Cambridge University Press:  10 February 2011

Feng Niu
Affiliation:
Department of Materials Science and Engineering and Materials Research Center, Northwestern University, Evanston, Illinois 60208 Draft, 15 November 1999
Brent.H. Hoerman
Affiliation:
Department of Materials Science and Engineering and Materials Research Center, Northwestern University, Evanston, Illinois 60208 Draft, 15 November 1999
Bruce.W. Wessels
Affiliation:
Department of Materials Science and Engineering and Materials Research Center, Northwestern University, Evanston, Illinois 60208 Draft, 15 November 1999
Get access

Abstract

MgO thin films were deposited on (100) Si substrates by metal-organic molecular beam epitaxy (MOMBE). Magnesium acetylacetonate was used as the precursor and an oxygen RF plasma was used as the oxidant. The films were characterized by a combination of transmission electron microscopy, Auger spectrometry and atomic force microscopy. Analyses indicate that the films directly deposited on Si substrates are stoichiometric, phase-pure, polycrystalline MgO with a [100] texture. Carbon contamination of the films resulting from precursor decomposition was not observed within detection limits. Furthermore, the growth rate of MgO has been systematically investigated as a function of growth temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 McKee, R.A., Walker, F.J. and Chisholm, M.F., Phys. Rev. Letts., 81(14), 3014(1998).Google Scholar
2 Zeng, J.M., Wang, H., Shang, S.X., Wang, Z. and Wang, M., J. Cryst. Growth, 169, 474(1996).Google Scholar
3 Fujii, E., Tomozawa, A., Fujii, S., Torii, H., Hattori, M. and Takayama, R., Jpn. J. Appl. Phys., 32, L1448 (1993).Google Scholar
4 Fujii, S., Tomozawa, A., Fujii, E., Torii, H., Takayawa, R. and Hirao, T., Appl. Phys. Lett., 65(11), 1463(1994).Google Scholar
5 Kim, S. and Hishita, S., Thin Solid Films, 281282, 449 (1996).Google Scholar
6 Tonouchi, M., Sakaguchi, Y. and Kobayashi, T., J. Appl. Phys., 62(3), 961(1987).Google Scholar
7 Li, Y., Xiong, G.C., Lian, G.J., Li, J. and Gan, Z., Thin Solid Films, 223, 11(1993).Google Scholar
8 Ishiguro, T., Hiroshima, Y. and Inoue, T., Jpn. J. Appl. Phys., 35, 3537 (1996).Google Scholar
9 Tiwari, P., Sharan, S. and Narayan, J., J. Appl. Phys., 69(12), 8358(1991).Google Scholar
10 Fork, D.K., Ponce, F.A., Tramontana, J.C. and Geballe, T.H., Appl. Phys. Lett., 58(20), 2294(1991).Google Scholar
11 Amirhaghi, S., Archer, A., Taguiang, B., McMinn, R., Barnes, P., Tarling, S. and Boyd, I.W., Appl. Surf. Sci., 54, 205(1992).Google Scholar
12 Walker, F.J., McKee, R.A., Pennycook, S.J. and Thundat, T.G., Mater. Res. Soc. Symp. Proc., 401, 13 (1996).Google Scholar
13 Yoon, J.G. and Kim, K., Appl. Phys. Lett., 66 (20), 2661(1995).Google Scholar
14 Bade, J. P., Baker, E. A, Kingon, A. I., Davis, R. F., and Bachmanm, J., J. Vac. Sci. Technol. B, 2, 327(1990).Google Scholar
15 Kingon, A.L., Hsieh, K.Y., King, L.L.H., Rou, S.H., Bachmann, K.J. and Davis, R.F., Mat. Res. Soc. Symp. Proc., 200, 49(1990).Google Scholar
16 Lichtenwalner, D.J., and Kingon, A.I., Appl. Phys. Lett. 59(23), 3045(1991).Google Scholar
17 Ikegawa, S., and Motoi, Y., Thin Solid Films, 281–282, 60(1996).Google Scholar
18 Hayama, K., Togun, T., and Ishida, M., J. Cryst. Growth, 179, 433(1997).Google Scholar