Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-08T00:23:19.205Z Has data issue: false hasContentIssue false

Growth of La2−x SrxCuO4 and La2CuO4+δ thin films by Reactive Coevaporation

Published online by Cambridge University Press:  10 February 2011

H. Sato
Affiliation:
NTT Basic Research Labs., Atsugi-shi 243-01, Japan, hisashi@will.brl.ntt.co.jp
H. Yamamoto
Affiliation:
NTT Basic Research Labs., Atsugi-shi 243-01, Japan, hisashi@will.brl.ntt.co.jp
M. Naito
Affiliation:
NTT Basic Research Labs., Atsugi-shi 243-01, Japan, hisashi@will.brl.ntt.co.jp
Get access

Abstract

Thin films of La2−xSrxCuO4 (LSCO) and La2CuO4+δ (LCO) were grown by reactive coevaporation. We obtained LSCO thin films on (001) LaSrA104 (LSAO) substrates with Tc(R=0) = 44 K, which is higher than that for bulk samples. A structural analysis indicates that the increase in Tc is due to compressive strain generated by the lattice mismatch. A similar strain effect is suggested from the substrate dependence of Tc for superconducting LCO thin films, for which Tc(R=0) reached 50 K on (001) LSAO substrates. We also succeeded in obtaining high-quality LSCO ultrathin films without any buffer or cap layers on (001) LSAO substrates, but not on substrates of other materials with the larger lattice mismatch with LSCO. These results demonstrate that the lattice mismatch with the substrates is important in thin-film growth of LSCO and LCO.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Suzuki, M., Phys. Rev. B 39, p. 2312 (1989).Google Scholar
2. Kao, H. L., Kwo, J., Fleming, R. M., Hong, M., and Mannaerts, J. P., Appl. Phys. Lett. 59, p. 2748 (1991).Google Scholar
3. Kim, J. H., Bozovic, I., Eom, C. B., Geballe, T. H. and Harris, J. S. Jr, Physica C 174, p. 435 (1991).Google Scholar
4. Frey, T., Chi, C. C., Tsuei, C. C., Shaw, T., and Bozso, F., Phys. Rev. B 49, p. 3483 (1994).Google Scholar
5. Trofimov, I. E., Johnson, L. A., Ramanujachary, K. V., Guha, S., Harrison, M. G., Greenblatt, M., Cieplak, M. Z., and Lindenfeld, P., Appl. Phys. Lett. 65, p. 2481 (1994).Google Scholar
6. Cieplak, M. Z., Berkowski, M.,Guha, S., Cheng, E., Vagelos, A. S., Rabinowitz, D. J., Wu, B., Trofimov, I. E., and Lindenfeld, P., Appl. Phys. Lett. 65, p. 3383 (1994).Google Scholar
7. Locquet, J.-P., Jaccard, Y., Cretton, A., Williams, E. J., Arrouy, F., Mächler, E., Schneider, T., Fisher, Ø. and Martinoli, P., Phys. Rev. B 54, p. 7481 (1996).Google Scholar
8. Arrouy, F., Locquet, J.-P., Williams, E. J., Mächler, E., Berger, R., Gerber, C., Monroux, C., Grenier, J.-C. and Wattiaux, A., Phys. Rev. B 54, p. 7512 (1996).Google Scholar
9. Yomo, S., Murayama, C., Takahashi, H., Mōri, N., Kishio, K., Kitazawa, K., and Fueki, K., Jpn. J. Appl. Phys. 26, p. L603 (1987).Google Scholar
10. Sato, H. and Naito, M., Physica C 274, p. 221 (1997).Google Scholar
11. Sato, H., Yamamoto, H., and Naito, M., Physica C 274, p. 227 (1997).Google Scholar
12. Sato, H., Naito, M., and Yamamoto, H., Physica C 280, p. 178 (1997).Google Scholar
13. Naito, M. and Sato, H., Appl. Phys. Lett. 67, p. 2557 (1995).Google Scholar
14. Yamamoto, H., Naito, M. and Sato, H. (unpublished).Google Scholar
15. Tajima, Y. and Hidaka, Y. (unpublished).Google Scholar
16. Motoi, Y., Fujimoto, K., Uwe, H., and Sakudo, T., J. Phys. Soc. Jpn. 60, p. 384 (1991).Google Scholar
17. Gugenberger, F., Meingast, C., Roth, G., Grube, K., Breit, V., Weber, T., and Wühl, H., Phys. Rev. B 49, p. 13137 (1994).Google Scholar
18. Yomo, S., Kawakami, M., Fen, H.-H., Li, Z.-G., Hor, P.-H. and Mōri, N. in Advances in Superconductivity IX, edited by S. Nakajima and M. Murakami (1996), p. 8184.Google Scholar