Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T01:16:10.999Z Has data issue: false hasContentIssue false

Growth of High Nitrogen Content GaAsN by Metalorganic Chemical Vapor Deposition

Published online by Cambridge University Press:  21 March 2011

J. C. Roberts
Affiliation:
Dept. of Electrical & Computer Engineering, N. C. State University, Campus Box 7911, Raleigh, N. C. 27695-7911.
B. F. Moody
Affiliation:
Dept. of Materials Science and Engineering, N. C. State University, Campus Box 7907, Raleigh, N. C. 27695-7907
P. Barletta
Affiliation:
Dept. of Electrical & Computer Engineering, N. C. State University, Campus Box 7911, Raleigh, N. C. 27695-7911.
M. E. Aumer
Affiliation:
Dept. of Electrical & Computer Engineering, N. C. State University, Campus Box 7911, Raleigh, N. C. 27695-7911.
S. F. LeBoeuf
Affiliation:
Dept. of Electrical & Computer Engineering, N. C. State University, Campus Box 7911, Raleigh, N. C. 27695-7911.
J. M. Luther
Affiliation:
Dept. of Electrical & Computer Engineering, N. C. State University, Campus Box 7911, Raleigh, N. C. 27695-7911.
S. M. Bedair
Affiliation:
Dept. of Electrical & Computer Engineering, N. C. State University, Campus Box 7911, Raleigh, N. C. 27695-7911.
Get access

Abstract

The incorporation of a high percentage of nitrogen in the GaAs lattice has been the subject of recent interest to reduce the bandgap while maintaining the nearly lattice matched condition to GaAs. We will report on the metalorganic chemical vapor deposition (MOCVD) of GaAsN using trimethylgallium (TMG), tertiarybutylarsine (TBA) and dimethylhydrazine (DMHy) organometallic sources in a hydrogen-free carrier gas. A nitrogen concentration as high as ∼8% in GaAsN was achieved. The effect of nitrogen concentration on the structural, optical and surface properties of GaAsN films will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kondow, M., Nakatsuka, S. I., Kitatani, T., Yazawa, Y., Okai, M., Jpn. J. Appl. Phys. 35, 5711 (1996).Google Scholar
2. Sato, S. I., Osawa, Y., Saitoh, T., Jpn. J. Appl. Phys. - Part1, No. 5A 36, 2671 (1997).Google Scholar
3. Larson, M. C., Kondow, M., Kitatani, T., Nakahara, K., Tamura, K., Inoue, H., Uomi, K., IEEE Photon. Tech. Lett. 10, 188 (1998).Google Scholar
4. Kurtz, S. R., Myers, D., and Olsen, J.M., Proceedings of the 26th IEEE Photovoltaics Spec. Conference (IEEE, New York, 1997), p. 875.Google Scholar
5. Bi, W. G., and Tu, C. W., Appl. Phys. Lett. 70, 1608 (1997).Google Scholar
6. Ougazzaden, A., Bellego, Y. Le, Rao, E. V. K., Juhel, M., Leprince, L., and Patriarche, G., Appl. Phys. Lett. 70, 2861 (1997).Google Scholar
7. Toivonen, J., Hakkarainen, T., Sopanen, M., Lipsanen, H., J. Crystal Growth 221, 456 (2000).Google Scholar
8. Sato, S.-I., Osawa, Y., and Saitoh, T., Jpn. J. Appl. Phys. - Part 1 No.5A 36, 2671 (1997).Google Scholar