Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-13T22:15:39.291Z Has data issue: false hasContentIssue false

Growth of GexSi1−X/Si Alloys on Si (100), (110) and (111) Surfaces

Published online by Cambridge University Press:  22 February 2011

R. Hull
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
J. C. Bean
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
L. Peticolas
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
Y. H. Xie
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
Y. F. Hsieh
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
Get access

Abstract

We compare and contrast GexSi1−x alloys grown on Si (100), (110) and (111) surfaces. The geometry of interfacial misfit dislocations are observed to be different on these three surfaces, as the intersections of available ♣111} glide planes are of different symmetries for the different interfaces. In addition, angular factors resolving the applied and line tension stresses onto misfit dislocations vary over the different surfaces, producing different effective stresses for identical layer thicknesses, compositions and microstructures. Finally, markedly different dislocation microstructures are observed on the different surfaces, as geometrical considerations show that partial dislocations may separately propagate on the (110) and (111) surfaces, in contrast to the (100) surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dodson, B W and Tsao, J Y 1987, Appl. Phys. Lett. 51, 1325 CrossRefGoogle Scholar
2. Eaglesham, D J, Kvam, E P, Maher, D M, Humphreys, C J and Bean, J C 1989, Phil. Mag. A59, 1059 CrossRefGoogle Scholar
3. Houghton, D C 1990, Appl. Phys. Lett. 57, 1434 and 2124CrossRefGoogle Scholar
4. Hull, R, Bean, J C, Werder, D J and Leibenguth, R E 1988, Appl. Phys. Lett. 52, 1605 CrossRefGoogle Scholar
5. Hull, R and Bean, J C 1989a, J. Vac. Sci. A7, 2580 CrossRefGoogle Scholar
6. Hull, R and Bean, J C 1989b, Appl. Phys. Lett 54, 925 CrossRefGoogle Scholar
7. Hull, R, Bean, J C, Bahnck, D, Peticolas, L J, Short, K T and Unterwald, F C 1991, J. Appl. Phys., in press.Google Scholar
8. Tuppen, C G and Gibbings, C J 1990, J. Appl. Phys. 68, 1526 CrossRefGoogle Scholar
9. Hirth, J P and Lothe, J 1968, Theory of Dislocations' (McGraw-Hill, New York)Google Scholar
10. Matthews, J. W. (1975), J. Vac. Sci Tech. 12, 126 and references thereinCrossRefGoogle Scholar
11. Alexander, H and Haasen, P 1968, Solid State Physics 22, 27 CrossRefGoogle Scholar
12. George, A and Rabier, J 1987, Revue Phys. Appl. 22, 941 CrossRefGoogle Scholar
13. Imai, M and Stimino, K 1983, Phil. Mag. A47, 599 Google Scholar
14. Patel, J R and Chaudhuri, A R 1966, Phys. Rev. 143, 601 CrossRefGoogle Scholar
15. Bean, J C, Feldman, L C, Fiory, A T, Nakahara, S and Robinson, I K 1984, J. Vac. Sci. Technol. A2, 436 CrossRefGoogle Scholar
16. Maree, P M J, Barbour, J C, van der Veen, J F, Kavanagh, K L, Bulle-Lieuwma, C W T and Viegers, M P A 1987, J. Appl. Phys. 62, 4413.CrossRefGoogle Scholar
17. Viegers, M P A, Bulle-Lieuwma, C W T, Zalm, P C and Maree, P M J 1985, Proc. Mat. Res. Sec. 37, 331 CrossRefGoogle Scholar
18. Thompson, N 1953, Proc. Phys. Soc. 66B, 481 CrossRefGoogle Scholar
19. Wegscheider, W, Eberl, K, Menczigar, U and Abstreiter, G 1990, Appl. Phys. Lett. 57, 875 CrossRefGoogle Scholar
20. Hirsch, P B, Howie, A, Nicholson, R B, Pashley, D W and Whelan, M J, ‘Electron Microscopy of Thin Crystals’ (Robert E. Krieger, Malabar, FL, 1977)Google Scholar
21. Heggie, M and Jones, R 1987, Inst Phys. Ser. Conf. 87 (Institute of Physics, Bristol, England), 367 Google Scholar