Hostname: page-component-5c6d5d7d68-thh2z Total loading time: 0 Render date: 2024-08-19T22:02:35.790Z Has data issue: false hasContentIssue false

Growth of GaInNAs by Plasma Assisted Molecular Beam Epitaxy

Published online by Cambridge University Press:  10 February 2011

David W. Gotthold
Affiliation:
Texas Materials Institute and Microelectronics Research CenterThe University of Texas at Austin, Austin, TX
Sridhar Govindaraju
Affiliation:
Texas Materials Institute and Microelectronics Research CenterThe University of Texas at Austin, Austin, TX
Archie L. Holmes Jr.
Affiliation:
Texas Materials Institute and Microelectronics Research CenterThe University of Texas at Austin, Austin, TX
Ben G. Streetman
Affiliation:
Texas Materials Institute and Microelectronics Research CenterThe University of Texas at Austin, Austin, TX
Get access

Abstract

The nitrogen containing alloy GaInNAs has attracted a great deal of interest recently for optoelectronic device applications at long wavelengths, especially 1.3µm, on GaAs substrates. What has been observed is that the material quality degrades rapidly with the addition of nitrogen. In this work we systematically explore the parameter space for the growth of GainNAs using plasma-assisted MBE and inert gas dilution. Inert gas dilution allows additional control of the production of active nitrogen; thus we can independently adjust RF power, gas flow rate, and nitrogen generation, which is used to study the effects of the plasma on the growth surface. In addition to examining the effects of plasma operating conditions, we will also explore the effects of other growth parameters (arsenic to nitrogen ratio and growth temperature) on the resultant structural and optical properties. These properties will be explored by photoluminescence, SIMS, and x-ray diffraction with the goal of understanding how nitrogen incorporation affects the resultant material properties. The resulting information is used to grow high quality layers for GaNAs avalanche photodiodes with a cut-off wavelength of 1.064µm

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Kondow, M., Kitatani, T., Nakatsuka, S. C., Larson, M. C., Nakahara, K., Yazawa, Y. and Okai, M., IEEE Journal of Selected Topics of Quantum Electronics, 3, 719729, (1997).Google Scholar
2 Kondow, M., Kitatani, T., Larson, M. C., Nakahara, K., Uomi, K. and Inoue, H., Invited Paper, (1997).Google Scholar
3 Nakahra, K., Kondow, M., Kitatani, T., Larson, M. C. and Uomi, K., IEEE Photonics Technology Letters, 10, 487488, (1998).Google Scholar
4 Kondow, M., Uomi, K., Niwa, A., Kitatani, T., Watahaki, S., Yazawa, Y., Hosomi, K. and Mozume, T., Solid-State Electronics, 41, 209212, (1997).Google Scholar
5 Gotthold, D. W., Govindaraju, S., Mattord, T., Holmes, A. L. Jr. Streetman, B. G., Journal of Vacuum Science and Technology A, 18, 461464, (2000).Google Scholar
6 Miyamoto, T., Kageyama, T., Makino, S., Schlenker, D., Koyama, F. and Iga, K., Journal of Crystal Growth, 209, 339344, (2000).Google Scholar
7 Bhat, R., Caneau, C., Salamanca-Riba, L., Bi, W. and Tu, C., Journal of Crystal Growth, 195, 427437, (1998).Google Scholar
8 Friedman, D. J., Geisz, J. F., Kurtz, S. R., Olson, J. M. and Reedy, R., Journal of Crystal Growth, 195, 438443, (1998).Google Scholar
9 Hohnsdorf, F., Koch, J., Agert, C. and Stolz, W., Journal of Crystal Growth, 195, 391396, (1998).Google Scholar
10 Schlenker, D., Miyamoto, T., Pan, Z., Koyama, F. and Iga, K., Journal of Crystal Growth, 196, 6770, (1999).Google Scholar
11 Mendoza-Diaz, G., Stevens, K. S., Scwatrzman, A. F. and Beresford, R., Journal of Crystal Growth, 178, 4555, (1997).Google Scholar
12 Qiu, Y., Nikishin, S. A., Temkin, H., Elyukhin, V. A. and Kudriavtsev, Y. A., Applied Physics Letters, 70, 21, 28312833, (1997).Google Scholar
13 Qiu, Y., Nikishin, S. A., Temkin, H., Faleev, N. N. and Kudriavtsev, Y. A., Applied Physics Letters, 70, 24, 32423244, (1997).Google Scholar
14 Cheng, T. S., Foxon, C. T., Jenkins, L. C., Hooper, S. E., Orton, J. W., Novikov, S. V., Popova, T. B. and Tretyakov, V. V., Journal of Crystal Growth, 158, 399402, (1996).Google Scholar
15 Halder, N. C. and Zhao, X., Journal of Vacuum Science and Technology, B, 17, 20192024, (1999).Google Scholar
16 Xin, H. P., Kavanagh, K. L. and Tu, C. W., Journal of Crystal Growth, 208, 145152, (2000).Google Scholar
17 Buyanova, I. A., Chen, W. M., Monemar, B., Xin, H. P. and Tu, C. W., Applied Physics Letters, 75, 24, 37813783, (1999).Google Scholar
18 Geisz, J. F., Friedman, D. J., Olson, J. M., Kurtz, S. R. and Keyes, B. M., Journal of Crystal Growth, 195, 401408, (1998).Google Scholar
19 Egorov, A. Y., Kovsh, A. R., Ustinov, V. M., Zhukov, A. E., Kopev, P. S. and Tu, C. W., Journal of Crystal Growth, 188, 6974, (1998).Google Scholar
20 Francoeur, S., Sivaraman, G., Qiu, Y., Nikishin, S. and Temkin, H., Applied Physics Letters, 72, 15, 18571859, (1998).Google Scholar
21 Kinsey, G. S., Gotthold, D. W., Holmes, A. L. Jr., Streetman, B. G. and Campbell, J. C., Applied Physics Letters, 76(20), 2000.Google Scholar
22 Sturge, M. D., Physical Review, 127, 768773, (1962).Google Scholar