Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-07-04T23:52:21.831Z Has data issue: false hasContentIssue false

Growth of Epitaxial ZnS Films by Pulsed-Laser Ablation

Published online by Cambridge University Press:  25 February 2011

J. W. McCamy
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996–1200
D. H. Lowndes
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6056
J. D. Budai
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6056
B. C. Chakoumakos
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6056
R. A. Zuhr
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6056
Get access

Abstract

Pulsed KrF (248nm) laser ablation of a polycrystailine ZnS target has been used to grow high quality, carbon-free, epitaxial ZnS thin films on GaAs(OOl), GaAs(111), and GaP(OOl). The films were grown at temperatures of 150–450°C, using a rotating substrate heater and deposition geometry that produces films with highly uniform thickness. X-ray rocking curves are consistent with (111) stacking faults being the dominant defects in the ZnS films grown on GaAs. The estimated stacking fault density is ∼6 × 1010 cm-3, comparable to the best MOCVD ZnS films. RBS analysis shows that these defects are located predominantly near the GaAs-ZnS interface. The anisotropy of the ZnS growth rate, between the GaAs(001) and GaAs(111) surfaces, was found to be temperature-dependent.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yamaga, S., Jpn. J. Appl. Phys. 30, 437 (1991).CrossRefGoogle Scholar
2. Saitoh, T., Yokogawa, T., Narusawa, T., Jpn. J. Appl. Phys. 30, 667 (1991).Google Scholar
3. Landis, G. A., Loferski, J. J., Beaulieu, R., Sekula-Moise, P. A., Vernon, S. M., Spitzer, M. B., Keavney, C. J., IEEE Trans. Elec. Dev. 37, 372 (1990).Google Scholar
4. Imai, T., Fuke, S., Araki, H., Kuwahara, K., J. Cryst. Growth 94, 983 (1989).Google Scholar
5. Kawakami, Y., Taguchi, T., Hiraki, A., J. Vac. Sci. Technol. B 5, 1171 (1987).Google Scholar
6. Kukimoto, H., J. Cryst. Growth 107, 637 (1991).Google Scholar
7. Giapis, K. P., Jensen, K. F., Potts, J. E., Pachuta, S. J., J. Elect. Mater. 19, 453 (1990).Google Scholar
8. Shi, L., Frankena, H. J., Vacuum 40, 399 (1990).Google Scholar
9. Lubben, D., Barnett, S. A., Suzuki, K., Gorbatkin, S., Greene, J. E., J. Vac. Sci. Technol. B. 3, 968 (1985).Google Scholar
10. Dubowski, J. J., Chemitronics 3, 66 (1988).Google Scholar
11. Cheung, J. T., Cirlin, E. H., Otsuka, N., Appl. Phys. Lett. 53, 310 (1988).CrossRefGoogle Scholar
12. Sankur, H., Cheung, J. T., Appl. Phys. A 47, 271 (1988).Google Scholar
13. Cheung, J. T., Sankur, H., CRC Critical Reviews in Solid State and Materials Sciences, 15, 63 (1988).CrossRefGoogle Scholar
14. Ready, J. F., Effects of High-Power Laser Radiation, Academic Press, New York, 1971.Google Scholar
15. Venkatesan, T., Wu, X. D., Inam, A., Wachtman, J. B., Appl. Phys. Lett. 52, 1193 (1988).Google Scholar
16. Muenchausen, R. E., Hubbard, K. M., Foltyn, S., Estler, R. C., and Nogar, N. S., Appl. Phys. Lett. 56, 578 (1990).Google Scholar
17. Kawakami, Y., Toyoda, T., Wu, Y., Fujita, S., Fujita, S., J. Cryst. Growth 107, 1072 (1991).Google Scholar
18. McCamy, J. W., Lowndes, D. H., Zhu, S., unpublishedGoogle Scholar
19. Williams, J. O., Ng, T. L., Wright, A. C., Cockayne, B., Wright, P. J., J. Cryst. Growth 68, 237 (1984)CrossRefGoogle Scholar
20. Sebastian, M. T., Krishna, P., Prog. Cryst. Growth Charact. 14, 103 (1987)Google Scholar
21. Vassamillet, L. F., J. Appl. Phys., 32, 778 (1961)Google Scholar
22. Tairov, Y. M., Tsvetkov, V. F., in Growth and Defect Structures, Springer-Verlag, New York, 1984 Google Scholar
23. Sze, S. M., Physics of Semiconductor Devices, John Wiley and Sons, New York, 1969.Google Scholar