Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-29T09:14:09.666Z Has data issue: false hasContentIssue false

Growth of epitaxial tetragonal Pb(Zr,Ti)O3 thin films with 100% polar-axis-orientation and their electrical properties

Published online by Cambridge University Press:  01 February 2011

Hitoshi Morioka
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, Yokohama, 226–8502, Japan
Shintaro Yokoyama
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, Yokohama, 226–8502, Japan
Takahiro Oikawa
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, Yokohama, 226–8502, Japan
Keisuke Saito
Affiliation:
Application Laboratory, Bruker AXS Yokohama, 221–0022, Japan
Hiroshi Funakubo
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, Yokohama, 226–8502, Japan
Get access

Abstract

Pb(ZrxTi1-x)O3 (PZT) thin films with the various Zr/(Zr+Ti) ratios and the film thickness of 50 and 250 nm were epitaxiallly grown on (100)cSrRuO3//(100)SrTiO3 substrates by metalorganic chemical vapor deposition at 540 °C. 50 nm-thick tetragonal PZT films consistd of 100% c-axis-orientation for the Zr/(Zr+Ti) ratio ranging from 0.13 to 0.56, while 250 nm-thick tetragonal ones consistd of about 70% c-axis-orientation for the range from 0.19 to 0.45. On the other hand, 50 and 250 nm-thick films composed rhombohedral single phase for the Zr/(Zr+Ti) ratio above 0.56 and 0.60, respectively. Mixture region of tetragonal and rhombohedral phases was observed from 0.45 to 0.60 for 250 nm-thick films, but was not for 50 nm-thick ones. Remanent polarization monotonously decreased with increasing the Zr/(Zr+Ti) ratio for 50 nm-thick films in tetragonal PZT films. These results show that Ti rich tetragonal PZT thin films have large spontaneous polarization with good square-shape hysteresis loops and are applicable for the high-density capacitor-type ferroelectric random access memories.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Scott, J. F. and de Araujo, C. A. P., Science 246, 1400 (1989).Google Scholar
2. Auciello, O., Scott, J. F., and Ramesh, R., Phys. Today 51, 22 (1998).Google Scholar
3. Foster, C. M., Bai, G.-R., Csencsits, R., Vetrone, J., Jammy, R., Wills, L. A., Carr, E., and Amano, J., J. Appl. Phys. 81, 2349 (1997).Google Scholar
4. Kim, D. -J., Maria, J. -P., Kingon, A. I., and Streiffer, S. K., J. Appl. Phys. 93, 5568 (2003).Google Scholar
5. Nagashima, K., Aratani, M., and Funakubo, H., J. Appl. Phys. 89, 4517 (2001).Google Scholar
6. Morioka, H., Asano, G., Oikawa, T., Funakubo, H., and Saito, K., Appl. Phys. Lett. 82, 4761 (2003).Google Scholar
7. Ishida, J., Yamada, T., Sawabe, A., Okuwada, K., and Saito, K., Appl. Phys. Lett. 80, 467 (2002).Google Scholar
8. Okuda, N., Saito, K., and Funakubo, H., Jpn. J. Appl. Phys., Part 1 39, 572 (2000).Google Scholar
9. Saito, K., Kurosawa, T., Akai, T., Oikawa, T., and Funakubo, H., J. Appl. Phys. 93, 545 (2003).Google Scholar
10. Saito, K., Kurosawa, T., Akai, T., Yokoyama, S., Morioka, H., Oikawa, T., and Funakubo, H., Mater. Res. Soc. Symp. Proc. 748, U13.4 (2003).Google Scholar
11. Shirane, G. and Suzuki, K., J. Phys. Soc. Jpn. 7, 333 (1952).Google Scholar
12. Roelofs, A., Böttger, U., Waser, R., Schlaphof, F., Trogisch, S., and Eng, L. M., Appl. Phys. Lett. 77, 3444 (2000).Google Scholar