Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-29T14:42:58.302Z Has data issue: false hasContentIssue false

Growth of C60 Fullerene Films on Semiconductor Surfaces

Published online by Cambridge University Press:  02 August 2011

Elena V. Basiuk (Golovataya-Dzhymbeeva)
Affiliation:
Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Apdo. Postal 70-186, 04510 México D.F., Mexico
José G. Bañuelos
Affiliation:
Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Apdo. Postal 70-186, 04510 México D.F., Mexico
Alejandro Esparza
Affiliation:
Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Apdo. Postal 70-186, 04510 México D.F., Mexico
José M. Saniger
Affiliation:
Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Apdo. Postal 70-186, 04510 México D.F., Mexico
Get access

Abstract

We report on a study of vacuum-deposited thin films of C60 fullerene on Si (100) and InP (100) semiconductor surfaces. The film morphology and C60—substrate interactions were investigated by using atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR). For the film deposition, both patterned Si aand InP surfaces were used. It was found that the stronger interactions occur between C60 molecules and Si surface, than between C60 molecules and InP surface. On InP surface with microrelief of parallel V-grooves oriented in [011] direction, C60 films grow preferentially above the groove walls, with C60 grains arrayed in the direction perpendicular to the groove axis.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Krakow, W., Rivera, N. M., Roy, R. A., Ruoff, R. S. and Cuomo, J. J., J. Mater. Res., 7, 784787 (1992).Google Scholar
2. Hebard, A. F., Haddon, R. C., Fleming, R. M. and Kortan, A. R., Appl. Phys. Lett., 59, 21092111 (1991).Google Scholar
3. Haluška, M., Kuzmany, H., Vybornov, M., Rogl, P. and Fejdi, P., Appl. Phys., A56, 161167 (1993).Google Scholar
4. Li, J.Ch., Yu, T., Ye, M. Sh., and Fan, X.-J., Thin Solid Films, 345, 236239 (1999).Google Scholar
5. Yao, J. H., Zou, Y. J., Zhang, X. W. and Chen, G.-H., Thin Solid Films, 305, 2225 (1997).Google Scholar
6. Nakayama, T., Nakaya, M. and Aono, M., Riken Review, 45, 35 (2002).Google Scholar
7. Thundant, T., Warmack, R. J., Ding, D. and Compton, R.N., Appl. Phys. Lett., 63, 891893 (1993).Google Scholar
8. Kobayashi, K., Yamada, H., Horiuchi, T. and Matsushige, K., Appl. Surface Sci., 157, 228232 (2000).Google Scholar
9. Sarid, D. and Chen, D., Nanotechnology, 7, 153156 (1996).Google Scholar
10. Bernaets, D., Tendeloo, G. V., Amelinckx, S., Havesi, K., Gensterblum, G., Yu, L. M., Pireaux, J.-J., Grey, F. and Bohr, J., J. Appl. Phys., 80, 33103318 (1996).Google Scholar
11. Gensterblum, G., Yu, L.-M., Pireaux, J.-J., Thiry, P. A., Caudano, R., Themlin, J.-M., Bouzidi, S. and Coletti, F., J. Appl. Phys., A56, 175183 (1993).Google Scholar
12. Yoneda, Y., Sakaue, K. and Terauchi, H., Jpn. J. Appl. Phys. Soc., 63, 3560 (1994).Google Scholar
13. Basiuk, E.V., Surface Coatings Technol., 67, 5154 (1994).Google Scholar
14. Kern, W., Handbook of Semiconductor Wafer Cleaning Technology (Noyes Publications, Park Ridge, NJ, 1993).Google Scholar