Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-28T13:57:33.709Z Has data issue: false hasContentIssue false

Growth and Optical Properties of 2D Photonic Crystals Based on Hexagonal GaAs/AlGaAs Pillar Arrays by Selective-Area Metalorganic Vapor Phase Epitaxy

Published online by Cambridge University Press:  01 February 2011

J. Motohisa
Affiliation:
Research Center for Integrated Quantum Electronics, Hokkaido University, North 13, West 8, Sapporo 060–8628, Japan
J. Takeda
Affiliation:
Research Center for Integrated Quantum Electronics, Hokkaido University, North 13, West 8, Sapporo 060–8628, Japan
M. Inari
Affiliation:
Research Center for Integrated Quantum Electronics, Hokkaido University, North 13, West 8, Sapporo 060–8628, Japan
T. Fukui
Affiliation:
Research Center for Integrated Quantum Electronics, Hokkaido University, North 13, West 8, Sapporo 060–8628, Japan
Get access

Abstract

We report on the growth of GaAs and GaAs/AlGaAs heterostructured hexagonal pillar arrays using selective area (SA) metalorganic vapor phase epitaxy (MOVPE) for the application of two-dimensional photonic crystals (2D-PhCs). SA-MOVPE was carried out on SiO2 masked (111)B GaAs substrates with circular or hexagonal hole openings. Extremely uniform array of hexagonal GaAs/AlGaAs pillars consisting {110} vertical facets with their diameter of order of 200 nm were obtained. Unexpectingly strong intense light emission was observed for the room temperature photoluminescence measurement, which suggests low surface nonradiative recombination and enhancement of the light extraction efficiency of the pillar arrays.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Fukui, T., Ando, S., Tokura, Y., and Toriyama, T., Appl. Phys. Lett. 58, 2018 (1991).Google Scholar
[2] Ando, S., Kobayashi, N., and Ando, H., Jpn. J. Appl. Phys. 32, L1293 (1993).Google Scholar
[3] Hamano, T., Hirayama, H., and Aoyagi, Y., Jpn. J. Appl. Phys. 36, L286 (1997).Google Scholar
[4] Akabori, M., Takeda, J., Motohisa, J., and Fukui, T., Physica E 13, 446 (2002).Google Scholar
[5] Takeda, J., Akabori, M., Motohisa, J., and Fukui, T., Appl. Surf. Sci. 190, 236 (2002).Google Scholar
[6] Akabori, M., Motohisa, J., and Fukui, T., IEEE Conf. Proc. 27th Int. Symp. Compound Semiconductors, 191 (2001);Google Scholar
Akabori, M., Takeda, J., Motohisa, J., and Fukui, T., Nanotechnology 14, 1071 (2003).Google Scholar
[7] Inari, M., Takeda, J., Motohisa, J. and Fukui, T., in workbook of the 11th international conference of Modulated Semiconductor Structures (MSS-11) (Nara, Japan, 2003);Google Scholar
Inari, M., Takeda, J., Motohisa, J. and Fukui, T., to be published in Physica E (2004).Google Scholar
[8] Motohisa, J., Takeda, J., Inari, M., Noborisaka, J., and Fukui, T., accepted for publication in Physica E.Google Scholar
[9] Noborisaka, J., Motohisa, J., and Fukui, T., unpublished.Google Scholar
[10] Malyarchuk, V., Tomm, J. W., Talalaev, V., Linau, Ch., Rinner, F., and Baeumler, M., Appl. Phys. Lett. 81, 346 (2002).Google Scholar
[11] Chang, S. S., Ando, S., and Fukui, T., Surf. Sci. 267, 214 (1992).Google Scholar
[12] Ando, S., Koybayashi, N., and Ando, H., Jpn. J. Appl. Phys. 37, L105 (1998).Google Scholar
[13] Fan, S., Villeneuve, P. R., Joannopoulos, J.D., and Schubert, E.F., Phys. Rev. Lett. 78, 3294 (1997).Google Scholar
[14] Baba, T., Inoshita, K., Tanaka, H., Yonekura, J., Ariga, M., Matsutani, A., Miyamoto, T., Koyama, F., and Iga, K., J. Lightwave Technol. 17, 2113 (1999).Google Scholar
[15] Boroditsky, M., Krauss, T. F., Coccioil, R, Vrijen, R., Bhat, R., and Yablonovitch, E., Appl. Phys. Lett. 75, 1036 (1999).Google Scholar
[16] Ryu, H. Y., Lee, Y. H., Sellin, R. L., and Bimberg, D., Appl. Phys. Lett. 79, 3573 (2001).Google Scholar
[17] Ryu, H.-Y., Hwang, J.-K., Lee, Y.-J., and Lee, Y.-H., IEEE Selected Topics on Quant. Electron. 8, 231 (2002).Google Scholar