Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-07-06T21:46:01.320Z Has data issue: false hasContentIssue false

Growth and Luminescence Properties of III-N:Er Materials Doped During Chemical Beam Epitaxy

Published online by Cambridge University Press:  10 February 2011

J. D. Mackenzie
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL
C. R. Abernathy
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL
S. J. Pearton
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL
U. Hömmerich
Affiliation:
Department of Physics, Research Center for Optical Physics, Hampton University, Hampton, VA
J. T. Seo
Affiliation:
Department of Physics, Research Center for Optical Physics, Hampton University, Hampton, VA
F. Ren
Affiliation:
Department of Chemical Engineering, University of Florida, Gainesville, FL
R. G. Wilson
Affiliation:
Consultant, Stevenson Ranch, CA;
Paul Chen
Affiliation:
U.S. Army Research Laboratory, Research Triangle Park, NC
J. M. Zavada
Affiliation:
U.S. Army Research Laboratory, Research Triangle Park, NC
Get access

Abstract

The incorporation and optical activation of Er in III-N optically-pumped and electroluminescent structures has been studied. For the first time, strong Er3+-related photoluminescence (PL) was measured at 300K for GaN:Er doped during growth on c-plane Al2O3 and Si. Also, room temperature electroluminescence was observed for simple GaN:Er structures on Si. Experiments to evaluate the effects C and 0 on the optical activity of Er indicated that these impurities enhance Er PL and EL in GaN. GaN films doped with Er to a concentration of 3 ×1018 cm−3 with [0] ∼ 1020 cm−3 and [C] ∼1021 cm−3 luminesce at 1.54 pim with an intensity ∼2 orders of magnitude greater than films with oxygen and carbon backgrounds of less than 1019 cm−3. Implantation and activation annealing was also shown to increase Er3+ signal in p(Mg)-i(Er)-n(Si) structures where C and 0 implant profiles were made to coincide with the Er-doped layers. The thermal PL quenching behavior was also markedly different for samples of varying 0 and C content. Er3+ photoluminescence from Gan:Er/Al2O3 samples with high O and C concentrations quenched by only 10% between 15 K and 300 K while the integrated PL signal from samples with lower [O] and [C] quenched ∼85% over the same temperature range.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ennen, H., Schneider, J., Pomrenke, G., and Axman, A., Appl. Phys. Lett., 43, 943 (1983).Google Scholar
2. Klein, P. B. and Pomrenke, G. S., Electron. Lett. 24, 1503 (1988).Google Scholar
3. Eaglesham, D. J., Michel, J., Fitzgerald, E. A., Jacobson, D. C., Poate, J. M., Benton, J. L., Polman, A., Xie, Y.-H., and Kimmerling, L. C., Appl. Phys. Lett., 58, 2797 (1991).Google Scholar
4. Polman, A., Custer, J. S., Snoeks, E., and van den Hoven, G. N., Nucl. Instr. Meth. B80/81, 653 (1993).Google Scholar
5. Kozanecki, A., Chan, M., Jeynes, C., Sealy, B., and Homewood, K., Solid State Commun., 78, 763 (1991).Google Scholar
6. Tang, Y. S., Zhang, J., Heasman, K. C., and Sealy, B. J., Solid State Commun., 72, 991 (1989).Google Scholar
7. Nakata, J., Taniguchi, M., and Takahei, K., Appl. Phys. Lett., 61, 2665 (1992).Google Scholar
8. Wessels, B. W., Mat. Res. Soc. Symp. Proc., 422, 247 (1996).Google Scholar
9. Favennec, P. N., Harridon, H. L., Salvi, M., Moutonnet, D. and Cuillo, Y. L., Electron. Lett. 25 718 (1989).Google Scholar
10. Neuhalfen, A. J. and Wessels, B. W., Appl. Phys. Lett. 59 2317 (1991).Google Scholar
11. Hansen, D. M., Zhang, R., Perkins, N. R., Safvi, S., Zhang, L., Bray, K. L., and Kuech, T. F. Appl. Phys. Lett., 72, 1244 (1998).Google Scholar
12. MacKenzie, J. D., Abernathy, C. R., Pearton, S. J., Hommerich, U., Wu, X., Schwartz, R. N., Wilson, R. G., and Zavada, J. M., Appl. Phys. Lett., 69, 2083 (1996).Google Scholar
13. Torvik, J. T., Feuerstein, R. J., and Pankove, J. I., Appl. Phys. Lett., 69, pp. 2098–100(1996).Google Scholar
14. MacKenzie, J. D., Abbaschian, L., Abernathy, C. R., Donovan, S. M., Pearton, S. J., Chow, P. C. and Van Hove, J., J. of Electron. Mat., 26 (1997) 1266.Google Scholar
15. MacKenzie, J. D., Abernathy, C. R., Pearton, S. J., Krishnamoorthy, V., Bharatan, S., Jones, K. S., and Wilson, R. G., Appl. Phys. Lett., 67 (1995) 253.Google Scholar
16. Digonnet, M. J. F., Rare-Earth Doped Fiber Lasers and Amplifiers, Marcel Dekker, (1993) pp. 7279.Google Scholar
17. Torvik, J. T., Feuerstein, R. J., Qiu, C. H., Leksono, M. W., Pankove, J. I., and Namavar, F., Mat. Res. Soc. Symp. Proc. 422 (1996) 199.Google Scholar
18. Michel, J., Benton, J. L., Ferrante, R. F., Jacobson, D. C., Eaglesham, D. J., Fitzgerald, E. A., Xie, Y.-H., Poate, J. M., and Kimmerling, L. C., J. Appl. Phys. 70 (1991) 2672.Google Scholar