Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-20T01:07:58.332Z Has data issue: false hasContentIssue false

Growth and Characterization of Polycrystalline Diamond Thin Films on Porous Silicon by Hot Filament Chemical Vapor Deposition

Published online by Cambridge University Press:  15 February 2011

S. Mirzakuchaki
Affiliation:
Electrical Engineering Department, University of Missouri-Columbia, Columbia, MO. 65211
E. J. Charlson
Affiliation:
Electrical Engineering Department, University of Missouri-Columbia, Columbia, MO. 65211
E. M. Charlson
Affiliation:
Electrical Engineering Department, University of Missouri-Columbia, Columbia, MO. 65211
T. Stacy
Affiliation:
Electrical Engineering Department, University of Missouri-Columbia, Columbia, MO. 65211
F. Shahedipour
Affiliation:
Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO. 65211
H. W. White
Affiliation:
Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO. 65211
Get access

Abstract

Hot filament chemical vapor deposition (HFCVD) was utilized to grow high quality diamond film on porous silicon (PS) substrates to a thickness of 5–6 μm. Boron-doped silicon substrates of <100> orientation and resistivity of 5–15 ohm-cm were anodized by the electrochemical process to form PS. A slurry of diamond paste (1/4 micron average grain size) was rubbed on the samples for a few seconds before introduction into the chamber. Diamond film growth on the PS has the advantages of shorter incubation time and higher nucleation density as evident from scanning electron microscopy (SEM). The results of X-ray diffraction confirm the growth of predominatly (111) oriented high quality diamond film. Electrical properties were also studied by sputtering circular gold contacts on top of diamond film and measuring current-voltage (I-V) characteristics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ascarelli, P. and Fontana, S., Appl. Surf. Sci. 64, 307 (1993).Google Scholar
2. Rebello, J. H. D., Straub, D. L., Subramaniam, V. V., Tan, E. K., Dregia, S. A., Preppemau, B. L., and Miller, T. A., Materials and Manufacturing Processes 6, 501 (1991).Google Scholar
3. Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
4. Canham, L. T., Houlton, M., Leong, W., Pickering, C., and Keen, J., J. Appl. Phys. 70,422 (1991).Google Scholar
5. Gullis, A. and Canham, L. T., Nature 353, 335 (1991).Google Scholar
6. Mazzoleni, C. and Pavesi, L., Appl. Phys. Lett. 67, 2983 (1995).Google Scholar
7. Shieh, S. Y. and Evans, J. W., J. Electrochem. Soc. 140, 1094 (1993).Google Scholar
8. Pavesi, L., Mazzoleni, C., Tredicucci, A., and Pellegrini, V., Appl. Phys. Lett. 67, 3280 (1995).Google Scholar
9. Stievenard, D. and Deresmes, D., Appl. Phys. Lett. 67, 1570 (1995).Google Scholar
10. Spitzl, R., Raiko, V., and Engemann, J., Diamond and Related Materials 3, 1256 (1994).Google Scholar
11. Ke, G. Q., Xing, Z. J., Yin, X., Chen, K., and Shen, Y., Vaccum 43, 1043 (1992).Google Scholar
12. Unno, H., Imai, K., and Muramoto, S., J. Electrochem. Soc. (Solid State Science and Technology), p. 645 (1987).Google Scholar
13. Heiderhoff, R., Spitzl, R., Maywald, M., Raiko, V., Balk, L. J., and Engemann, J., Proc. SPIE, 2151, (Los Angeles, CA, 1994), p.59.Google Scholar
14. Mirzakuchaki, S., Hajsaid, M., Golestanian, H., Roychoudhurry, R., Charlson, E. J., Charlson, E. M., and Stacy, T., Appl. Phys. Lett. 67, 3557 (1995).Google Scholar
15. Liu, Z., Zong, B. Q., and Lin, Z., Thin Solid Films 254, 3 (1995).Google Scholar