Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-27T00:57:32.664Z Has data issue: false hasContentIssue false

Grain-Size Control of Nanocrystalline Silicon by Pulsed Gas Plasma Process

Published online by Cambridge University Press:  15 February 2011

A. Itoh
Affiliation:
Research Center for Quantum Effect Electronics and Department of Physical Electronics, Tokyo Institute of Technology, Meguro-ku, Tokyo 152, Japan.
T. Ifuku
Affiliation:
Research Center for Quantum Effect Electronics and Department of Physical Electronics, Tokyo Institute of Technology, Meguro-ku, Tokyo 152, Japan.
M. Otobe
Affiliation:
Research Center for Quantum Effect Electronics and Department of Physical Electronics, Tokyo Institute of Technology, Meguro-ku, Tokyo 152, Japan.
S. Oda
Affiliation:
Research Center for Quantum Effect Electronics and Department of Physical Electronics, Tokyo Institute of Technology, Meguro-ku, Tokyo 152, Japan.
Get access

Abstract

A new method for the formation of nanocrystalline Si (nc-Si) in the SiH4 plasma using pulsed-H2 supply with very-high-frequency (VHF;144MHz) excitation is proposed to control the size of nc-Si. Nanocrystalline Si is formed in the gas phase of SiH4 plasma cell by coalescence of radicals. The principle of size control is based on the separation of nucleation and growth process. Supplying H2 into a SiH4 plasma enhances nucleation of nc-Si and suppresses growth rate of nc-Si. The nucleated nc-Si grows larger in a SiH4 plasma during the off state of the H2 supply. As the newly supplied H2 forces nc-Si grown in the previous cycle out of the plasma cell into the deposition chamber, the next nucleation of nc-Si is enhanced simultaneously. Using this method, we fabricated 8 nm-diameter nc-Si with small dispersion (±1 nm) successfully.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Likharev, K. K., IBM J. Res. & Dev. 32, 144 (1988).Google Scholar
2.Kastner, M. A., Rev. Modern Physics 64, 849 (1992).Google Scholar
3.Visscher, E. H., Lindeman, J., Verbrugh, S. M., Hadley, P., Mooij, J. E., and van der Vleuten, W., Appl. Phys. Lett. 68, 2014 (1996).Google Scholar
4.Matsumoto, K., Ishii, M., and Segawa, K., J. Vac. Sci. Technol. B 14, 1331 (1996).Google Scholar
5.Yano, K., Ishii, T., Hashimoto, T., Kobayashi, T., Murai, F. and Seki, K., IEEE Trans. Electron Devices 41, 1628 (1994).Google Scholar
6.Takahashi, Y., Namatsu, H., Kurihara, K., Iwadate, K., Nagase, M. and Murase, K., IEEE Trans. Electron Devices 43, 1213 (1996).Google Scholar
7.Otobe, M. and Oda, S., in Amorphous Silicon Technology-1995, edited by Hack, M., Schiff, E. A., Madan, A., Powell, M., and Matsuda, A. (Mater. Res. Soc. Proc. 377, San Francisco, CA, 1995) pp.5156.Google Scholar
8.Otobe, M., Kanai, T., Ifuku, T., Yajima, H., and Oda, S., J. Non-Crystalline Solids 198–200, 875 (1996).Google Scholar
9.Oda, S., Noda, J. and Matsumura, M., Jpn. J. Appl. Phys. 29, 1889 (1990).Google Scholar
10.Oda, S. and Yasukawa, M., J. Non-Cryst. Solids. 137&138, 677 (1991).Google Scholar
11.Oda, S., Plasma Sources Sci. Technol. 2, 26 (1993).Google Scholar
12.Oda, S. and Otobe, M., in Microcrystalline and Nanocrystalline Semiconductors, edited by Collins, R. W., Tsai, C. C., Hirose, M., Kock, F., and Brus, L., (Mater. Res. Soc. Proc. 358, Boston, MA, 1995) pp.721731.Google Scholar
13.Knudsen, M., The Kinetic Theory of Gas, (Methuen, 1950).Google Scholar
14.Nielsen, A. E., Kinetics of Precipitation, (Pergamon, Oxford, 1964).Google Scholar
15.Dushman, S. and Lafferty, J. M., Scientific Foundation of Vacuum Technique, 2nd ed. (John Wileys & Sons, Inc., New York, 1962).Google Scholar