Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-17T10:32:08.523Z Has data issue: false hasContentIssue false

Grain Size Dependent Mechanical Properties in Nanophase Materials

Published online by Cambridge University Press:  15 February 2011

Richard W. Siegel
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
Gretchen E. Fougere
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA; Present address: Automotive, Energy and Controls Group, Motorola Energy Systems, Northbrook, Illinois 60062, USA
Get access

Abstract

It has become possible in recent years to synthesize metals and ceramics under well controlled conditions with constituent grain structures on a nanometer size scale (below 100 nm). These new materials have mechanical properties that are strongly grain-size dependent and often significantly different than those of their coarser grained counterparts. Nanophase metals tend to become stronger and ceramics are more easily deformed as grain size is reduced. The observed mechanical property changes appear to be related primarily to grain size limitations and the large percentage of atoms in grain boundary environments. A brief overview of our present knowledge about the grain-size dependent mechanical properties of nanophase materials is presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nastasi, M., Parkin, D. M., and Gleiter, H., eds., Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures, (Kluwer, Dordrecht, 1993).Google Scholar
2. Darken, L. S., Trans. Am. Soc. Met. 54, 599 (1961).Google Scholar
3. Rigney, D. A., Chen, L. H., Naylor, M. G. S., Rosenfield, A. R., Wear 100, 195 (1984).Google Scholar
4. Siegel, R. W. and Fougere, G. E., in Nanophase Materials: Synthesis-Properties- Applications, Hadjipanayis, G. C. and Siegel, R. W., eds. (Kluwer, Dordrecht, 1994) p. 233.Google Scholar
5. Siegel, R. W. and Fougere, G. E., Nanostruct. Mater. 6, in press (1995).Google Scholar
6. Nieman, G. W., Weertman, J. R., and Siegel, R. W., Scripta Metall. 23, 2013 (1989); G. W. Nieman, J. R. Weertman, and R. W. Siegel, J. Mater. Res. 6, 1012 (1991); G. W. Nieman, Ph.D. Thesis, Northwestern University (1991).Google Scholar
7. Nieman, G. W., Weertman, J. R., and Siegel, R. W., in Microcomposites and Nanophase Materials, Aken, D. C. Van et al., eds. (TMS, Warrendale, 1991) p. 15.Google Scholar
8. Jang, J. S. C. and Koch, C. C., Scripta Metall. et Mater. 24, 1599 (1990).Google Scholar
9. Brun, P. Le, Gaffet, E., Froyen, L. and Delaey, L., Scripta Metall. et Mater. 26, 1743 (1992).Google Scholar
10. El-Sherik, A. M., Erb, U., Palumbo, G., and Aust, K. T., Scripta Metall. et Mater. 27, 1185 (1992).Google Scholar
11. Hughes, G. D., Smith, S. D., Pande, C. S., Johnson, H, R., and Armstrong, R. W., Scripta Metall. 20, 93 (1986).Google Scholar
12. Ganapathi, S. K., Aindow, M., Fraser, H. L., and Rigney, D. A., Mater. Res. Soc. Symp. Proc. 206, 593 (1991).Google Scholar
13. Zhang, H. Y., Hu, Z. Q., and Lu, K., to be published.Google Scholar
14. Chang, H., Altstetter, C. J., and Averback, R. S., J. Mater. Res. 7, 2962 (1992).Google Scholar
15. Koch, C. C. and Cho, Y. S., Nanostruct. Mater. 1, 207 (1992).Google Scholar
16. Kim, K. and Okasaki, K., Mater. Sci. Forum 88–90, 553 (1992).Google Scholar
17. Christman, T. and Jain, M., Scripta Metall. et Mater. 25, 767 (1991).Google Scholar
18. Palumbo, G., Erb, U., and Aust, K. T., Scripta Metall. et Mater. 24, 2347 (1990).Google Scholar
19. Lu, K., Wei, W. D., and Wang, J. T., Scripta Metall. et Mater. 24, 2319 (1990).Google Scholar
20. Liu, X. D., Ding, B. Z., Hu, Z. Q., Lu, K., and Wang, Y. Z., Physica B 192, 345 (1993).Google Scholar
21. Liu, X. D., Wang, J. T., and Ding, B. Z., Scripta Metall. et Mater. 28, 59 (1993).Google Scholar
22. Tong, H. Y., Wang, J. T., Ding, B. Z., Jiang, H. G., and Lu, K., J. Non-cryst. Solids 150, 444 (1992).Google Scholar
23. Lu, K. et al., to be published.Google Scholar
24. Kumpmann, A., Günther, B., and Kunze, H.-D., in Ref. (1) p. 312.Google Scholar
25. Günther, B., Baalman, A., and Weiss, H., Mater. Res. Soc. Symp Proc. 195, 611 (1990).Google Scholar
26. Valiev, R. Z., Krasilnikov, N. A., and Tsenev, N. K., Mater. Sci. Eng. A 137, 35 (1991).Google Scholar
27. Nieman, G. W., Weertman, J. R., and Siegel, R. W., Scripta Metall. et Mater. 24, 145 (1990).Google Scholar
28. Gleiter, H., Prog. Mater. Sci. 33, 223 (1989).Google Scholar
29. Fougere, G. E., Riester, L., Ferber, M., Weertman, J. R., and Siegel, R. W., Mater. Sci. Eng. A, in press (1995)Google Scholar
30. El-Sherik, A. M., Erb, U., Krstic, V., Szpunar, B., Aus, M. J., Palumbo, G., and Aust, K. T., Mater. Res. Soc. Symp Proc. 286, 173 (1993).Google Scholar
31. Sui, M. L., Patu, S., and He, Y. Z., Scripta Metall. et Mater. 25, 1537 (1991).Google Scholar
32. Laugier, M. T., J. Mater. Sci. Lett. 6, 841 (1987).Google Scholar
33. Milligan, W. W., Hackney, S. A., Ke, M., and Aifantis, E. C., Nanostruct. Mater. 2, 267 (1993).Google Scholar
34. Li, Z., Ramasamy, S., Hahn, H., and Siegel, R. W., Mater. Lett. 6, 195 (1988).Google Scholar
35. Karch, J. and Birringer, R., Ceramics International 16, 291 (1990).Google Scholar
36. McLandish, L. E., Kear, B. H., and Kim, B. K., Nanostruct. Mater. 1, 119 (1992).Google Scholar
37. Averback, R. S., Hahn, H., Höfler, H. J., Logas, J. L., and Chen, T. C., Mater. Res. Soc. Symp. Proc. 153, 3 (1989).Google Scholar
38. Höfler, H. J. and Averback, R. S., Scripta Metall. et Mater. 24, 2401 (1990).Google Scholar
39. Mayo, M. J., in Ref. (1) p. 366.Google Scholar
40. Hahn, H., Nanostruct. Mater. 6, in press (1995).Google Scholar
41. Jain, M. and Christman, T., Acta Metall. et Mater. 42, 1901 (1994).Google Scholar
42. Altstetter, C. J., in Ref. (1) p. 381.Google Scholar
43. Ashby, M. F. and Verrall, R. A., Acta Metall. 21, 149 (1973).Google Scholar
44. Weertman, J. and Weertman, J. R., in Physical Metallurgy (2nd Ed.), Cahn, R. W., ed. (North-Holland, Amsterdam, 1970) p. 989.Google Scholar
45. Chokshi, A. H., Rosen, A., Karch, J., and Gleiter, H., Scripta Metall. 23, 1679 (1989).Google Scholar
46. Karch, J., Birringer, R., and Gleiter, H., Nature 330, 556 (1987).Google Scholar
47. Hahn, H., Logas, J. C., Höfler, H. J., and Averback, R. S., Mater. Res. Soc. Symp Proc. 206, 569 (1991).Google Scholar
48. Mayo, M., Siegel, R. W., Narayanasamy, A., and Nix, W. D., J. Mater. Res. 5, 1073 (1990).Google Scholar
49. Mayo, M. J., Siegel, R. W., Liao, Y. X., and Nix, W. D., J. Mater. Res. 7,973 (1992).Google Scholar
50. Ciftcioglu, M. and Mayo, M. J., Mater. Res. Soc. Symp. Proc. 196, 77 (1990).Google Scholar
51. Mayo, M. J., in Superplasticity in Advanced Materials, Hori, S. et al., eds. (Japan Society for Research on Superplasticity, Osaka, 1991) p. 541.Google Scholar
52. Hahn, H. and Averback, R. S., J. Amer. Cer. Soc. 74, 2918 (1991).Google Scholar
53. Raj, R., J. Amer. Cer. Soc. 71, C507 (1988).Google Scholar
54. Höfler, H.-J. and Averback, R. S., Mater. Res. Soc. Symp. Proc. 286, 9 (1993).Google Scholar
55. Hahn, H. and Averback, R. S., Nanostruct. Mater. 1, 95 (1992).Google Scholar
56. Cui, Z. and Hahn, H., Nanostruct. Mater. 1, 419 (1992).Google Scholar
57. Siegel, R. W., in Encyl. of Appl. Physics, Vol.11, Trigg, G.L., ed. (VCH, Weinheim, 1994) p. 173.Google Scholar
58. Romanov, A. E., Nanostruct. Mater. 6, in press (1995).Google Scholar
59. Nieh, T. G. and Wadsworth, J., Scripta Metall. et Mater. 25, 955 (1991).Google Scholar
60. Scattergood, R. O. and Koch, C. C., Scripta Metall. et Mater. 27, 1195 (1992).Google Scholar
61. Lu, K. and Sui, M. L., Scripta Metall. et Mater. 28, 1465 (1993).Google Scholar
62. Lian, J. and Baudelet, B., Nanostruct. Mater. 2, 415 (1993).Google Scholar
63. Gryaznov, V. G. and Trusov, L. I., Prog. Mater. Sci. 37, 289 (1993).Google Scholar