Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-07-07T09:34:18.343Z Has data issue: false hasContentIssue false

Grain Size Dependent Magnetic Properties of Nanocrystalline Sm [BE]Co [BD][BJ]/Cu

Published online by Cambridge University Press:  15 March 2011

L. Bessais
Affiliation:
LCMTR, UPR209, CNRS, 2/8 rue Henri Dunant, B.P. 28 F-94320 Thiais, France IUFM de Créteil, F-94861 Bonneuil sur Marne, France
C. Djéga-Mariadassou
Affiliation:
LCMTR, UPR209, CNRS, 2/8 rue Henri Dunant, B.P. 28 F-94320 Thiais, France
J. Zhang
Affiliation:
LCMTR, UPR209, CNRS, 2/8 rue Henri Dunant, B.P. 28 F-94320 Thiais, France
V. Lalanne
Affiliation:
LCMTR, UPR209, CNRS, 2/8 rue Henri Dunant, B.P. 28 F-94320 Thiais, France
A. Percheron-Guégan
Affiliation:
LCMTR, UPR209, CNRS, 2/8 rue Henri Dunant, B.P. 28 F-94320 Thiais, France
Get access

Abstract

The evolution of both micro structural and magnetic properties of the Sm[BE]Co[BD][BJ] Cu powder, is studied as a function of soft co-milling time. The average grain size in the range 20 - 50 nm was determined by transmission electron microscopy coupled with x-ray diffraction using the Rietveld method. The particle shape and chemical distribution were investigated by elemental mapping, using wavelength dispersive x-ray analysis with electron microprobe analysis. The coercivity evolution shows that an optimum value of 6 kOe is obtained after 5 h co-milling. The microstructure analysis indicates that both materials are well mixed in nanometer scale. This technique appears as a potential route to synthesize nanocrystalline Sm[BE]Co[BD][BJ] isolated by non-magnetic metal Cu.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Buschow, K.H.J., Rep. Prog. Phys. 54, 1123 (1991).Google Scholar
2. Leslie-Pelecky, D. L. and Rieke, R. D., Chem. Matter. 8, 1770 (1996).Google Scholar
3. Kryder, M. H., Messner, M., and Carley, L. R., J. Appl. Phys. 79, 4485 (1996).Google Scholar
4. Lambeth, D. N., Velu, E. M. T., Bellesis, G. H., Lee, L. L., and Laughlin, D. E., J. Appl. Phys. 79, 4496 (1996).Google Scholar
5. Romero, S. A., Cornejo, D. R., Rhen, F. M., Neiva, A. C., Tabacniks, M. H., and Missell, F. P., J. Appl. Phys. 87, 6965 (2000).Google Scholar
6. Takei, S., Otagri, Y., Morisaka, A., and Matsumoto, M., J. Appl. Phys. 85, 6145 (1999).Google Scholar
7. Yamashita, T., Chan, L. T., Fujiwara, T., and Chen, T., IEEE Trans. Magn. 27, 4727 (1991).Google Scholar
8. Xiao, G, and Chien, L. C., J. Appl. Phys. 63, 4252 (1988).Google Scholar
9. Champion, Y., and Bigot, J., Scripta Materialia 35, 517 (1996).Google Scholar