Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T12:07:21.160Z Has data issue: false hasContentIssue false

Gold Nanolayers Embedded in Zinc Oxide for Large Area Flexible Photovoltaics

Published online by Cambridge University Press:  22 August 2011

T. L. Alford
Affiliation:
School of Materials and Flexible Display Center at ASU, Arizona State University, Tempe, Arizona 85287, USA
K. Sivaramakrishnan
Affiliation:
School of Materials and Flexible Display Center at ASU, Arizona State University, Tempe, Arizona 85287, USA
Get access

Abstract

Transparent conducting ZnO/Au/ZnO thin film structures were grown by the magnetron sputtering technique on flexible polymer substrates. These films displayed a seven orders of magnitude drop in resistivity (200 to 5.2×10-5 Ω-cm) upon increase of the Au layer thickness from 0 nm to 12 nm. The sheet resistance also showed a substantial decrease to a value of 6.5 _/sq. These films displayed a photopically average transmittance between 75% and 85% depending upon the gold thickness, and a peak transmittance of up to 93%. The best Haacke figure of merit was 15.1×10-3 Ω−1. As the Au layer thickness was increased, the conduction changed from conduction through the substrate when the nanometal islands are small and far apart to activated tunneling between discontinuous islands, and finally to direct tunneling between larger islands and metallic conduction through a near-continuous layer. Optical transmission behavior of the films was described in terms of the Au’s absorption due to interband electronic transitions in the shorter visible wavelengths, and free carrier absorption losses at the longer red wavelengths. This was combined with the limitation of the mean free path in discontinuous films and the size-dependent dielectric constant of the Au particles that enhances absorption in the longer visible wavelengths.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wan, Q., Dattoli, E. N., and Lu, W., Appl. Phys. Lett. 90, 222107 (2007)Google Scholar
2. Look, D. C., Leedy, K. D., Tomich, D. H., and Bayraktaroglu, B., Appl. Phys. Lett. 96, 062102 (2010)Google Scholar
3. Gordon, R. G., MRS Bulletin 25, 52 (2000)Google Scholar
4. Sivaramakrishnan, K., Ngo, A. T., Iyer, S., and Alford, T. L., J. Appl. Phys. 105, 063525 (2009)Google Scholar
5. Bhosle, V., Tiwari, A., and Narayan, J., Appl. Phys. Lett. 88, 032106 (2006)Google Scholar
6. Park, T. Y., Choi, Y. S., Kang, J. W., Jeong, J. H., Park, S. J., Jeon, D. M., Kim, J. W., and Kim, Y. C., Appl. Phys. Lett. 96, 051124 (2010)Google Scholar
7. Zhang, S. X., Dhar, S., Yu, W., Xu, H., Ogale, S. B., and Venkatesan, T., Appl. Phys. Lett. 91, 112113 (2007)Google Scholar
8. Ghosh, D. S., Chen, T. L., and Pruneri, V., Appl. Phys. Lett. 96, 041109 (2010)Google Scholar
9. Sahu, D. R., Lin, S. Y., and Huang, J. L., Appl. Surf. Sci. 252, 7509 (2006)Google Scholar
10. Han, H., Theodore, N.D., and Alford, T.L., J. Appl. Phys. 103, 013708 (2008)Google Scholar
11. Sivaramakrishnan, K., and Alford, T. L., Appl. Phys. Lett. 94, 052104 (2009)Google Scholar
12. Ghosh, D. S., Chen, T. L., and Pruneri, V., Appl. Phys. Lett. 96, 091106 (2010)Google Scholar
13. Postlethwaite, T.A., Hutchison, J.E., Hathcock, K.W., and Murray, R.W., Langmuir 11, 4109 (1995)Google Scholar
14. Hatton, R.A., Willis, M.R., Chesters, M.A., and Briggs, D., J. Mater. Chem. 13, 722 (2003)Google Scholar
15. Sivaramakrishnan, K., Theodore, N. D., Moulder, J. F., and Alford, T. L., J. Appl. Phys. 106, 063510 (2009)Google Scholar
16. Fredriksson, H., Persson, B., and Ystrom, Y. L., Physica Scripta 3, 169 (1971)Google Scholar
17. Andersson, T., J. Phys. D: Appl. Phys. 9, 973 (1976)Google Scholar
18. Adkins, C. J., J. Phys.: Condens. Matter 1, 1253 (1989)Google Scholar
19. Chopra, K. L., Bobb, L. C., and Francombe, M. H., J. Appl. Phys. 34, 1699 (1963)Google Scholar
20. Pashley, D. W., Stowell, M. J., Jacobs, M. H., and Law, T. J., Phil. Mag. 10, 127 (1964)Google Scholar
21. Chopra, K. L., and Bobb, L. C., Acta Metallurgica 12, 807 (1964)Google Scholar
22. Driscoll, W. G., and Vaughan, W., Handbook of Optics (McGraw-Hill, New York, USA, 1978)Google Scholar
23. Truong, V. V., and Scott, G. D., J. Opt. Soc. Am. 66, 124 (1976)Google Scholar
24. Kreibig, U., and Fragstein, C. V., Z. Physik 224, 307 (1969)Google Scholar
25. Doremus, R., Thin Solid Films 326, 205 (1998)Google Scholar
26. Han, H., Mayer, J. W., and Alford, T. L., J. Appl. Phys. 100, 083715 (2006)Google Scholar
27. Choopun, S., Vispute, R. D., Yang, W., Sharma, R. P., and Venkatesan, T., Appl. Phys. Lett. 80, 1529 (2002)Google Scholar
28. Han, H., Adams, D., Mayer, J. W., and Alford, T. L., J. Appl. Phys. 98, 083705 (2005)Google Scholar
29. Haacke, G., J. Appl. Phys. 47, 4086 (1976)Google Scholar