Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-27T17:46:11.633Z Has data issue: false hasContentIssue false

GMR and Structure in Sputtered Co90Fe10/Ag Multilayers

Published online by Cambridge University Press:  15 February 2011

J. D. Jarratt
Affiliation:
Department of Metallurgical and Materials Engineering and The Center for Materials for Information Technology, The University of Alabama, Tuscaloosa, Alabama 35487–0202.
J. A. Barnard
Affiliation:
Department of Metallurgical and Materials Engineering and The Center for Materials for Information Technology, The University of Alabama, Tuscaloosa, Alabama 35487–0202.
Get access

Abstract

Giant magnetoresistance (GMR), structure, and magnetic properties of sputtered (Co90Fe10 X Å/Ag Y Å) multilayer films have been investigated. Distinct GMR behaviors including granulartype (GGMR) and ‘discontinuous’ (DGMR) are observed which are strongly dependent on the individual CoFe and Ag layer thicknesses; however, standard multilayer GMR and the associated antiferromagnetic (AFM) coupling is absent. The multilayer structure, individual layer thicknesses, and growth texture were investigated using high and low angle x-ray diffraction (HXRD & LXRD).

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Baibich, M.N., Broto, J.M., Fert, A., Dau, F. Nguyen Van, Petroff, F., Eitenne, P., Creuzet, G., Friederich, A., Chazelas, J., Phys. Rev. Lett. 61, 2472 (1988).Google Scholar
[2] Binasch, G., Grtinberg, P., Saurenbach, F., Zinn, W., Phys. Rev. B. 39, 4828 (1989).Google Scholar
[3] Parkin, S.S.P., More, N., and Roche, K.P., Phys. Rev. Lett. 61, 2304 (1990). S.S.P. Parkin, Phys. Rev. Lett. 67, 3598 (1991).Google Scholar
[4] Araki, S., Yasui, K., and Narumiya, Y., J. Phys. Soc. Japan 60, 2827 (1991).Google Scholar
[5] Mosca, D.H. et al., J. Magn. Magn. Mater. 93, 480 (1991).Google Scholar
[6] Barnard, J.A., Waknis, A., Tan, M., Haftek, E., Parker, M.R., Watson, M.L., Magn, J.. Magn. Mater. 114, L230 (1992).Google Scholar
[7] Loloee, R., Schroeder, P.A., Pratt, W. P. Jr., Bass, J., and Fert, A., Physica B. 204, 27 (1995).Google Scholar
[8] Schroeder, P.A., Holody, P., Loloee, R., Duvail, J.L., Barthélemy, A., Steren, L.B., Morel, R., and,Fert, A., Mater. Res. Soc. Symp. Proc. 384, 415 (1995).Google Scholar
[9] Alphen, E.A.M. van and Jonge, W.J.M. de, Phys. Rev. B. 51, 8182 (1995).Google Scholar
[10] Redon, O., Pierre, J., Rodmacq, B., Mevel, B., and Dieny, B., Magn, J.. Magn. Mater. 149, 398 (1995).Google Scholar
[11] Honda, K., Sato, H., Aoki, Y., and Araki, S., J. Phys. Soc. Japan 64, 2191 (1995).Google Scholar
[12] Jarratt, J.D. and Barnard, J.A., IEEE Trans. Mag. 31, 3952 (1995).Google Scholar
[13] Jarratt, J.D. and Barnard, J.A., J. Appl. Phys. (to be published).Google Scholar
[14] Xiao, J. C., Jiang, J.S., and Chien, C.L., Phys. Rev. Lett. 68, 3749 (1992).Google Scholar
[15] Berkowitz, A. E., et al., Phys. Rev. Lett. 68, 3745 (1992).Google Scholar
[16] Hylton, T.L., Coffey, K. R., Parker, M.A., and Howard, J.K., Science 261, 1021 (1993).Google Scholar
[17] Mezey, L.Z. and Giber, J., Jpn. J. Appl. Phys. 21, 1569 (1982).Google Scholar
[18] Volmer, M. and Weber, A., Z. Phys. Chem. 119, 277 (1926).Google Scholar
[19] Frank, F.C. and Merwe, J.H. van der, Proc. Roy. Soc. [London] A198, 205 (1949).Google Scholar
[20] Modak, A.R., Parkin, S.S.P., and Smith, D.J., J. Magn. Magn. Mater. 129, 415 (1994).Google Scholar
[21] Suguwara, M., Kondo, M., Yamazaki, S., and Nakajima, K., Appl. Phys. Lett. 52, 742 (1988).Google Scholar
[22] Schelp, L.F. et al., Appl. Phys. Lett. 61, 1858 (1992).Google Scholar