Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T04:29:16.031Z Has data issue: false hasContentIssue false

Glide of Perfect Dislocations in TiAl

Published online by Cambridge University Press:  01 January 1992

Sylvte Farenc
Affiliation:
CEMES-LOE/CNRS, BP 4347, 31055 Toulouse Cedex, France.
Alain Couret
Affiliation:
CEMES-LOE/CNRS, BP 4347, 31055 Toulouse Cedex, France.
Get access

Abstract

In situ deformation experiments have been performed in TiAl in order to study the glide of perfect dislocations. The deformation is accomodated by the jerky movement of rectilinear screw dislocations moving slower than the edge segments. This behaviour is interpreted in terms of frictional forces which originate in a non-planar structure of the dislocation core.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kawataba, T., Kanai, T. and Izumi, O., Acta. Metall. 33, 1355 (1985).Google Scholar
2. Farenc, S., Thèse de Doctorat, University Paul Sabatier, Toulouse-France, (1992).Google Scholar
3. Farenc, S., Caillard, D. and Couret, A., Proc. of 6th JIMIS on Intermetallic Compounds Structure and Mechanical Properties, 791 (1991).Google Scholar
4. Hug, G., Loiseau, A. and Veyssifère, P., Phil. Mag., 57, 499 (1988).Google Scholar
5. Farenc, S., Coujou, A. and Couret, A., Phil. Mag., in press (1993).Google Scholar
6. Farenc, S., Coujou, A. and Couret, A., Mater. Sci and Eng. A., in press (1993).Google Scholar
7. Court, S. A., Vasudevan, V. and Fraser, H. L., Phil. Mag. A, 61, 141 (1990).Google Scholar
8. Hug, G., Thèse de Doctorat, University of Paris Sud-France, (1988).Google Scholar
9. Lipsitt, H.A., Shechtman, D. and Schafrik, R.E., Metal. Trans. A, 6, 1991 (1975).Google Scholar
10. Greenberg, B.A., Antonova, O.V., Indenbaum, V.N., Karkina, L.I., Notkin, A.B., Ponomarev, M.V. and Smirnov, L.V., Acta Met. Mater., 39, 233 (1991).Google Scholar
11. Greenberg, B.A., Antonova, O.V., Indenbaum, V.N., Karkina, L.I., Notkin, A.B., Ponomarev, M.V. and Smirnov, L.V., Acta Met. Mater., 39, 243 (1991).Google Scholar
12. Greenberg, B.A., Antonova, O.V., Karkina, L.I., Notkin, A.B., and Ponomarev, M.V., Proc. of 6th JIMIS on Intermetallic Compounds Structure and Mechanical Properties, 355 (1991).Google Scholar
13. Whang, S.H. and Hahn, Y.D., Scripta Met., 24, 1679 (1990).Google Scholar
14. Whang, S.H., Hahn, Y.D., Li., Z.X. and Li, Z.C., Proc. of 6th JIMIS on Intermetallic Compounds Structure and Mechanical Properties, 763 (1991).Google Scholar
15. Hemker, K.J., Viguier, B. and Mills, M.J., Accepted in Mater. Sci and Eng. A.(1993).Google Scholar
16. Li, Z.X. and Whang, S.H., Mat. Sci. and Eng. A, 152, 182 (1992).Google Scholar
17. Caillard, D., Clèment, N., Couret, A., Androussi, Y., Lefebvre, A. and Vanderschaeve, G., Proc. of the Microsc. Semicond. Mater. Conf., Oxford, 361 (1987).Google Scholar
18. Couret, A. and Caillard, D.,Proc. Int. Conf. on Dislocation Mechanisms and the Strength of Advanced Materials, Aussois, France, J. Phys. ( III), 885 (1991).Google Scholar
19. Farenc, S., Caillard, D. and Couret, A., Acta Met. Mater., in press, (1993).Google Scholar