Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-18T08:52:51.178Z Has data issue: false hasContentIssue false

Glass Composite Materials for Nuclear and Hazardous Waste Immobilisation

Published online by Cambridge University Press:  01 February 2011

Michael I. Ojovan
Affiliation:
Immobilisation Science Laboratory, Department of Engineering Materials, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
Jariah M. Juoi
Affiliation:
Immobilisation Science Laboratory, Department of Engineering Materials, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
Aldo R. Boccaccini
Affiliation:
Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
William E. Lee
Affiliation:
Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
Get access

Abstract

Glass composite materials (GCM) are versatile wasteforms for immobilising various types of both radioactive and hazardous wastes. We review current research on the utilisation of GCMs for hazardous and radioactive waste immobilisation. Compared to homogeneous glassy materials GCMs can incorporate larger amounts of waste elements and, in the case of glass matrix composites, they can be produced using lower processing temperatures (by viscous flow sintering) than those of conventional melting.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ojovan, M.I. and Lee, W.E., An Introduction to Nuclear Waste Immobilisation (Elsevier, Amsterdam, 2005).Google Scholar
[2] Donald, I.W., Glass Technology, 48, 155163 (2007)Google Scholar
[3] Rawling, R.D., Wu, W. P., Boccaccini, A. R., J. Mater. Sci. 41, 733761 (2006).Google Scholar
[4] Colombo, P., Brusatin, G., Bernardo, E., Scarinci, G., Current Opinion in Solid State and Material Science 7, 225239 (2003).Google Scholar
[5] Lee, W.E., Ojovan, M.I., Stennett, M.C. and Hyatt, N.C., Adv. Applied Ceramics 105 [1] 312 (2006).Google Scholar
[6] Lewis, M.A.. and Fischer, D.F., “Properties of glass-bonded zeolite monoliths,” Ceram. Trans., 45, 277286, 1994.Google Scholar
[7] Juoi, J.M., Ojovan, M.I., Lee, W.E.. Proc. ICEM'05, Glasgow, Scotland, ICEM05-1069, ASME (2005).Google Scholar
[8] Ojovan, M.I. and Batyukhnova, O.G.. Proc. WM'07, Tucson, AZ, WM7061 (2007).Google Scholar
[9] Ojovan, M.I., Lee, W.E., New Developments in Glassy Nuclear Wasteforms (Nova Science Publishers, New York, 2007).Google Scholar
[10] Loiseau, P., Caurant, D., Majerus, O. and Baffier, N.. J. Mater. Sci. 38, 843864 (2003).Google Scholar
[11] Boccaccini, A. R., Bernardo, E., Blain, L. and Boccaccini, D.N.., J. Nucl. Mater. 327, 148158 (2004).Google Scholar
[12] Digeos, A.A., Valdez, J.A., Sikafus, K.E., S.Atiq, Grimes, R.W. and Boccaccini, A.R., J. Mater. Sci. 38, 15971604 (2003).Google Scholar
[13] Boccaccini, A.R., Berthier, T., Seglem, S., Ceram. Int. 33 12311235 (2007).Google Scholar
[14] Pace, S., Cannillo, V., Wu, J., Boccaccini, D. N., Seglem, S., Boccaccini, A. R., A. R., , J. Nuclear Mater. 341 1218 (2005).Google Scholar
[15] Abdeluas, A., Noirault, S., Grambow, B.. J. Nucl. Mat., 358, 19 (2006).Google Scholar
[16] Henry, N., Deniard, P., Jobic, S., Brec, R., Fillet, C., Bart, F., Grandjean, A. and Pinet, O., J. Non. Cryst. Solids 333, 199205 (2004).Google Scholar
[17] Sobolev, I.A., Ojovan, M.I., Scherbatova, T.D., Batyukhnova, O. G. Glasses for radioactive waste (Energoatomizdat, Moscow, 1999).Google Scholar
[18] Sobolev, I.A., Dmitriev, S.A., Lifanov, F.A., Kobelev, A.P., Stefanovsky, S.V. and Ojovan, M.I., Glass Technology 46, 2835 (2005).Google Scholar
[19] Juoi, J.M., Ojovan, M.I.. Glass Technology, 48, 124129 (2007).Google Scholar
[20] Gahlert, S., Ondracek, G., in; Radioactive waste forms for the future, Lutze, W., Ewing, R. C., eds. (North Holland Publ., pp. 161166, 1988)Google Scholar
[21] Sahimi, M., Application of Percolation Theory (Taylor & Francis Publisher, London, 1994).Google Scholar
[22] Boccaccini, A.R., Janczak, J., Kern, H., Ondracek, G., in Proc. 4th. International Symposium on the Reclamation, Treatment and Utilization of Coal Mining Wastes. Vol. II, Skarzynska, K. M. ed. (1993), pp. 719726.Google Scholar
[23] Boccaccini, A.R., Kopf, M., Stumpfe, W., Ceram. Int. 21, 231235 (1995).Google Scholar
[24] Boccaccini, A.R., Janczak, J., Taplin, D.M. R., Köpf, M., Environmental Technol. 17, 11931203 (1996).Google Scholar
[25] Roether, J.A., Boccaccini, A. R., Chapter 20 in Handbook of Ceramic Composites, ed. by Bansal, N. P., (Kluwer Academic Publ., Boston, Dordrecht, London, 2005).Google Scholar
[26] Boccaccini, A.R., M. Bücker, Bossert, J., Marszalek, K., Waste Management 17, 3945 (1997).Google Scholar
[27] Bauer, C., Gahlert, S., Ondracek, G., in The geological disposal of high level radioactive waste, Brookings, D. G., ed. (Theoprastus Publications, pp. 187195, 1987).Google Scholar