Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T19:38:41.256Z Has data issue: false hasContentIssue false

Giant Magnetostrictive, Spring Magnet Type Multilayers and Torsion Based Microactuators

Published online by Cambridge University Press:  10 February 2011

J. Betz
Affiliation:
Lab. de Magn. Louis Néel, CNRS, BPI66, F-38042 Grenoble, France
K. Mackay
Affiliation:
Lab. de Magn. Louis Néel, CNRS, BPI66, F-38042 Grenoble, France
J.-C. Peuzin
Affiliation:
Lab. de Magn. Louis Néel, CNRS, BPI66, F-38042 Grenoble, France
D. Givord
Affiliation:
Lab. de Magn. Louis Néel, CNRS, BPI66, F-38042 Grenoble, France
B. Halstrup
Affiliation:
Inst. of Techn. Physics, Heinr.-Plett-Str. 40, D-34132 Kassel, Germany
Get access

Abstract

There is a need for powerful active materials in microsystem actuators. Research on thin film magnetostrictive materials has concentrated on optimising the magnetostrictive response notably by reducing the required driving magnetic field. Here we present a novel type of multilayer, where 2 alloys having different properties are coupled together. The resulting composite system represents a new material with novel characteristics, which can not be fulfilled by simple alloys. In particular here we have investigated magnetostrictive multilayers, with remarkable low field performances (i.e. very large ∂λ / ∂H).

Most magnetostrictive microactuators are based on a bimorph structure. However, these simple structures are prone to thermal drift. We present here also some results on a torsion based magnetostrictive microactuator prototype being insensitive to thermal drift.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brück, R., Hahn, K. and Stienecker, J., J. Micromech. Microeng. 5, (1995).Google Scholar
2. Duc, N. H., Mackay, K., Betz, J. and Givord, D., J. Appl. Phys., 79, (2), 973977 (1996).Google Scholar
3. Quandt, E., Gerlach, B. and Seemann, K., J. Appl. Phys., 76, (10), 70007002 (1994).Google Scholar
4. du Trémolet de Lacheisserie, E. and Peuzin, J. C., JMMM 136, 189196 (1994).Google Scholar
5. Betz, J., Mackay, K. and Givord, D., to be published.Google Scholar
6. Wüchner, S., Betz, J., Givord, D., Mackay, K., Santos, A. D., Souche, Y. and Voiron, J., JMMM 126, 352354 (1993).Google Scholar
7. Schatz, F., Hirscher, M., Schnell, M., Flik, G. and Kronmüller, H., J. Appl. Phys. 76, (9), 53805382 (1994).Google Scholar
8. Peuzin, J.C. and Mackay, K., J. Appl. Phys., accepted for publication, (1996).Google Scholar
9. Betz, J., du Trémolet de Lacheisserie, E. and Baczewski, L. T., Appl. Phys. Lett. 68, (1), 132133 (1996).Google Scholar
10. Betz, J., Mackay, K., Peuzin, J.-C., Halstrup, B. and Lhermet, N., Actuator 96, edited by Axon, (Conf. Proc. 5, Bremen, Germany, Axon Technology Consult, 1996) pp. 283286.Google Scholar
11. Bassous, E., IEEE Trans.on Elee. Devices 25, (10), 11781185 (1978).Google Scholar