Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-02T05:39:00.552Z Has data issue: false hasContentIssue false

Giant Magnetoresistance in Granular Ni81Fe19/Ag Formed from Annealed Multilayers

Published online by Cambridge University Press:  03 September 2012

X. Bian
Affiliation:
Centre for the Physics of materials and Department of Physics, McGill University, 3600, University St., Montreal, Québec, Canada H3A 2T8
A. Zaluska
Affiliation:
Centre for the Physics of materials and Department of Physics, McGill University, 3600, University St., Montreal, Québec, Canada H3A 2T8
Z. Altounian
Affiliation:
Centre for the Physics of materials and Department of Physics, McGill University, 3600, University St., Montreal, Québec, Canada H3A 2T8
J.O. Ström-Olsen
Affiliation:
Centre for the Physics of materials and Department of Physics, McGill University, 3600, University St., Montreal, Québec, Canada H3A 2T8
Y. Huai
Affiliation:
INRS-Énergié et Matériaux, 1650 Montée, St-Julie, Varennes, Québec, Canada J3X, 1S2
R.W. Cochrane
Affiliation:
Département de Physique, Université de Montréal, C.P.6182, Suce. A, Montréal, Québec, Canada H3C 3J7
Get access

Abstract

We have observed giant Magnetoresistance (GMR) in Ni81Fe19/Ag granular structures synthesized by the annealing of artificial multilayers made by sputtering. The size and morphology of the magnetic precipitates can be controlled by adjusting the magnetic layer thickness in the initial stage. Magnetoresistance as large as 30% was found at 4.2 K with a rather small saturation field. Giant Magnetoresistance in this alloy system essentially depends on the magnetic precipitate size, annealing temperature and the Ni81Fe19 concentration. The temperature dependence of the magnetoresistance in these films is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Berkowitz, A.E., Carey, M.J., Mitchell, J.R., Young, A.P., Zhang, S., Spada, F.E., Parker, F.T., Hutten, A., and Thomas, G., Phys. Rev. Lett. 68, 3745 (1992).Google Scholar
[2] Xiao, J.Q., Jiang, J.S. and Chien, C.L., Phys. Rev. Lett. 68, 3749 (1992).Google Scholar
[3] Baibich, M.N., Broto, J.M., Fert, A., Nguyen van Dau, F., Petroff, F., Etienne, P.E., Creuzet, G., Friederich, A., and Chazelas, J., Phys. Rev. Lett. 61, 2472 (1988).Google Scholar
[4] Xiao, J.Q., Jiang, J.S. and Chien, C.L., Phys. Rev. B 46, 9266 (1992).Google Scholar
[5] Massalski, T.B., Bianry Alloy Phase Diagrams, Vol. 1 p 25, 48 (1986).Google Scholar
[6] Huai, Y., Cochrane, R.W., Shi, Y., Fischer, H.E. and Sutton, M.. Mat. Res. Soc. Symp. Proc. Vol. 238, 671 (1992).Google Scholar
[7] Cochrane, R.W., Destry, J. and Trudeau, M., Phys. Rev. B 27, 5955 (1983).Google Scholar
[8] Zhang, Shufeng, Appl. Phys. Lett. 61, 1855 (1992).Google Scholar
[9] Zhang, Shufeng and Levy, P.M., Phys. Rev. B 43, 11048 (1991).Google Scholar
[10] Morrish, A.H., Physical Principles of Magnetism (Wiley, New York 1965).Google Scholar