Hostname: page-component-848d4c4894-89wxm Total loading time: 0 Render date: 2024-07-05T17:01:00.468Z Has data issue: false hasContentIssue false

Giant Ferromagnetic Hall Coefficient in La0.5Ca0.5CoO3

Published online by Cambridge University Press:  15 February 2011

A. V. Samoilov
Affiliation:
Department of Physics 114–36, California Institute of Technology, Pasadena, CA 91125
N. -C. Yeh
Affiliation:
Department of Physics 114–36, California Institute of Technology, Pasadena, CA 91125
R. P. Vasquez
Affiliation:
Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
Get access

Abstract

We report the studies of the Hall effect and magnetic properties in La0.5Ca0.5CoO3 thin films and ceramics. We use the local Hall probe and SQUID magnetometers to measure the magnetization M of the samples. Both below and above the Curie temperature, the Hall resistivity pxy(H) is shown to be proportional to M(H) (H is the applied magnetic field). Thus, our results provide convincing evidence for the anomalous Hall effect in these cobaltites. The value of the anomalous Hall coefficient Rs in La0.5Ca0.5CoO3 significantly exceeds those of other known single-phase ferromagnetic metals. We suggest that the coexistence of high- and low-spin configurations in the perovskite cobaltites, which gives rise to magnetic percolation behavior in La1-xCax.CoO3,may be responsible for the giant Ra.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hurd, C. M., The Hail effect in metals and alloys, Plenum Press, New York - London, 1972.Google Scholar
2. Kondorskii, E. I., Cheremushkina, A. V., and Kurbaniyazov, N., Fizika Tverdogo Tela 6, 539 (1964) (Soviet Physics - Solid State 6, 422 (1964).Google Scholar
3. Kondo, J., Prog. Theoret. Phys. (Japan) 27, 772 (1962).Google Scholar
4. Maranzana, F. E., Phys. Rev. B 160, 421 (1967).Google Scholar
5. Señaris-Rodriguez, M. A. and Goodenough, J. B., J. Solid State Chem. 118, 323 (1995).Google Scholar
6. Jonker, G. H. and van Santen, J. H., Physica 16, 337 (1950).Google Scholar
7. Zener, C., Phys. Rev. 82, 403 (1960).Google Scholar
8. de Gennes, P.-G., Phys. Rev. 118, 141 (1960).Google Scholar
9. Taguchi, H., Shimada, M., and Koizumi, M., J. Solid State Chem. 41, 329332 (1982).Google Scholar
10. van der Pauw, L. J., Philips Res. Reports 13, 1 (1958).Google Scholar
11. Samoilov, A. V., Yeh, N. - C., and Vasquez, R. P., preprint.Google Scholar
12. Adachi, K. and Ohkohchi, K., J. Phys. Soc. Jpn. 49, 154161 (1980).Google Scholar