Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T10:56:29.100Z Has data issue: false hasContentIssue false

Generation of Circularly Polarized Light of Highly Oriented Poly(P-Phenylene Vinylene)

Published online by Cambridge University Press:  21 March 2011

A. Marletta
Affiliation:
Instituto de Física de São Carlos, Universidade de São Paulo, C.P. 369, 13560-970, São Carlos- SP, Brazil
Get access

Abstract

Langmuir-Blodgett (LB) films of poly(p-phenylene vinylene) (PPV) were prepared using an amphiphilic precursor, where the counterion chloride was partially replaced by a long chain dodecylbenzenesulfonate ion. These LB-PPV films are highly ordered along the dipping direction as demonstrated by linear dichroism experiments using linearly polarized optical absorption and emission. The intensity ratio between emitted light parallel and perpendicular to the dipping direction was ca. 17, which is much higher than the dichroic ratio of 3.6 found in the polarized absorption experiment. These values indicate an efficient energy and/or charge transfer between low conjugated segments (disordered) and highly conjugated (ordered) ones after excitation. In addition, the LB films displayed large circular polarization with an asymmetry factor ge which varies from 0.6 to –0.2 when the sample temperature is increased from 30 to 300 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wu, A., Yokoyama, S., Watanabe, S., Kikimoto, M., Imai, Y., Araki, T., Iriyama, K., Thin Solid Films 244, 750 (1994).Google Scholar
2. Era, M., Kamiyama, K., Yoshiura, K., Momii, T., Murata, H., Tokito, S., Tsutsui, T., Saito, S., Thin Solid Films 179, 1 (1989).Google Scholar
3. Kalinowski, J., J. Phys. D: Appl. Phys 32, 179250 (1999).Google Scholar
4. McBranch, D., Campbell, I. H., Smith, D. L., Appl. Phys. Lett. 66, 1175 (1995).Google Scholar
5. Gagnon, D. R., Karasz, F. E., Thomas, E.L., Lenz, R. W., Synth. Met. 20, 85 (1987).Google Scholar
6. Montali, A., Bastiaansen, C., Smith, P., Weder, C., Nature 392, 261 (1998)Google Scholar
7. Dyreklev, P., Berggren, M., Inganäs, O., Andersson, M.R., Wennerström, O., Hjertberg, T., Adv. Mater. 43, 7 (1995).Google Scholar
8. Wan, W. M. V., Greenham, N. C., Friend, R. H., Synth. Met. 102, 1055 (1999).Google Scholar
9. Kim, Y. K., Kim, K.S., Kang, W. H., Yang, S. S., Sohn, B. C., Thin Solid Films 312, 291 (1998).Google Scholar
10. Marletta, A., Gonçalves, D., Oliveira, O. N. Jr., Faria, R. M., Guimarães, F. E. G., Macromolecules 33, 5886 (2000).Google Scholar
11. Marletta, A., Gonçalves, D., Oliveira, O.N. Jr., Faria, R.M., Guimarães, F. E. G., Adv. Mat. 12, 69 (2000).Google Scholar
12. Halliday, D. A., Burn, P. L., Friend, R. H., Bradley, D. D. C., Holmes, A. B., Synth. Met. 55–57, 954 (1993).Google Scholar
13. Obrzut, J., Karasz, F. E., J. Chem. Phys. 87, 2349 (1987).Google Scholar
14. Brazovskii, S., Kirova, N. and Bishop, A. R., Optical Materials 9, 465 (1998).Google Scholar