Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-07-25T11:59:26.028Z Has data issue: false hasContentIssue false

Generalized Melting Criterion for Amorphization

Published online by Cambridge University Press:  01 January 1992

R. Devanathan
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439 Dept. of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
N. Q. Lam
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
P. R. Okamoto
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
M. Meshii
Affiliation:
Dept. of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
Get access

Abstract

We present a thermodynamic model of solid-state amorphization based on a generalization of the well-known Lindemann criterion. The original Lindemann criterion proposes that melting occurs when the root-mean-square amplitude of thermal displacement exceeds a critical value. This criterion can be generalized to include solid-state amorphization by taking into account the static displacements. In an effort to verify the generalized melting criterion, we have performed molecular dynamics simulations of radiation-induced amorphization in NiZr, NiZr2, NiTi and FeTi using embedded-atom potentials. The average shear elastic constant G was calculated as a function of the total mean-square atomic displacement following random atom-exchanges and introduction of Frenkel pairs. Our results provide strong support for the generalized melting criterion.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Okamoto, P. R. and Meshii, M., in Science of Advanced Materials , edited by Wiedersich, H. and Meshii, M. (ASM, Metals Park, OH, 1990), pp. 3398. Google Scholar
2. Massobrio, C., Pontikis, V. and Martin, G., Phys. Rev. B 41, 10486 (1990).Google Scholar
3. Sabochick, M. J. and Lam, N. Q., Phys. Rev. B 43, 5243 (1991); Mat. Res. Soc. Symp. Proc. 201, 387 (1991).Google Scholar
4. Devanathan, R., Lam, N. Q., Sabochick, M. J., Okamoto, P. R. and Meshii, M., Alloys, J. and Compounds (in press); Mat. Res. Soc. Symp. Proc. 235, 539 (1992).Google Scholar
5. Lam, N. Q., Okamoto, P. R., Sabochick, M. J. and Devanathan, R., Alloys, J. and Compounds (in press).Google Scholar
6. Lam, N. Q., Okamoto, P. R., Devanathan, R. and Meshii, M., Proceedings of the NATO Advanced Study Institute on Statics and Dynamics of Alloy Phase Transformations, June 21 - July 3, 1992, Rhodes, Greece (Plenum Press, New York) (in press).Google Scholar
7. Mori, H. and Fujita, H., Jpn. J. Appl. Phys. 21, L494 (1982).Google Scholar
8. Limoge, Y. and Barbu, A., Phys. Rev. B 30, 2212 (1984).Google Scholar
9. Luzzi, D. E. and Meshii, M., Res Mechanica 21, 207 (1987).Google Scholar
10. Lindemann, A., Z. Phys. 11, 609 (1910).Google Scholar
11. Ziman, J. M., Principles of the Theory of Solids, Cambridge University Press, Cambridge (1972), p. 65. Google Scholar
12. Voronel, A., Rabinovich, S., Kisliuk, A., Steinberg, V. and Sverbilova, T., Phys. Rev. Lett. 60, 2402 (1988).Google Scholar
13. Devanathan, R., Lam, N. Q., Sabochick, M. J., Okamoto, P. R. and Meshii, M., (to be published).Google Scholar
14. Xu, G., Meshii, M., Okamoto, P. R. and Rehn, L. E., Alloys, J. and Compounds (in press).Google Scholar