Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-17T15:08:27.943Z Has data issue: false hasContentIssue false

Gelation of Rodlike Polymers

Published online by Cambridge University Press:  26 February 2011

Paul S. Russo
Affiliation:
Macromolecular Studies Group, Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803–1804
Aslam H. Chowdhury
Affiliation:
Macromolecular Studies Group, Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803–1804
Mazidah Mustafa
Affiliation:
Macromolecular Studies Group, Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803–1804
Get access

Abstract

Some opportunities for utilizing gelation of rodlike polymers such as poly(p-phenylenebenzobisthiazole) for the production of new materials are described. Morphological studies concerning gels of poly(γ–benzyl–α,L–glutamate) in the solvents toluene, N,N-dimethylformamide and N,N-dimethylformamide/water are reviewed, newly interpreted and extended. A provisional diagram which maps out the gelling behavior in four distinct regions of concentration and temperature concludes the article.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bawden, F. C., Pirie, N. W., Bernal, J. D. and Fankuchen, I., Nature, 138 (2), 1051 (1936).Google Scholar
2. Russo, P. S. in Reversible Polymeric Gels and Related Systems, edited by Russo, P. S. (American Chemical Society, Washington DC, 1987), Ch. 1.Google Scholar
3. Se, K. and Berry, G. C., ibid., Ch. 10.Google Scholar
4. Cohen, Y., Frost, H. H. and Thomas, E. L., ibid., Ch. 12.Google Scholar
5. Allen, S. R., Filippov, A. V., Farris, R. J., Thomas, E. L., Wong, C. P., Berry, G. C., and Chenevey, E. C., Macromolecules, 14, 1135 (1981).CrossRefGoogle Scholar
6. Mustafa, M. and Russo, P. S., Am. Chem. Soc. Polym. Mat. Sci. & Engr. Prepr., 59, 1053 (1988).Google Scholar
7. Chuah, H.-H. (private communication).Google Scholar
8. Miller, W. G., Kou, L., Tohyama, K. and Voltaggio, V., J. Polym. Sci., Polym. Symp., 65, 91 (1978).Google Scholar
9. Tohyama, K. and Miller, W. G., Nature, 289, 813 (1981).Google Scholar
10. Goebel, K. D. and Berry, G. C., J. Polym. Sci., Polym. Phys. Ed., 15, 555 (1977).Google Scholar
11. Goebel, K. D., Berry, G. C., and Tanner, D. W., J. Polym. Sci., Polym. Phys. Ed., 17, 917 (1979).CrossRefGoogle Scholar
12. Sasake, S., Hikata, M., Shiraki, C. and Uematsu, I., Polym. J. (Japan), 14, 205 (1982).CrossRefGoogle Scholar
13. Miller, W. G., Wu, C. C., Wee, E. L., Santee, G. L., Rai, J. H. and Goebel, K. G., Pure and Appl. Chem., 38, 37 (1974).Google Scholar
14. Flory, P. J., Proc. Roy. Soc. (London), A234, 60 (1956).Google Scholar
15. Flory, P. J., Proc. Roy. Soc. (London), A234, 73 (1956).Google Scholar
16. Cahn, J. W. and Hilliard, J. E., J. Chem. Phys., 31, 668 (1959).Google Scholar
17. Cahn, J. W., J. Chem. Phys., 42, 93 (1965).Google Scholar
18. Russo, P. S., Magestro, P. and Miller, W. G., in Reversible Polymeric Gels and Related Systems, edited by Russo, P. S. (American Chemical Society, Washington DC, 1987), Ch. 11.Google Scholar
19. The assessment that the size isn't increasing assumes that the measurements were carried in the limit of infinitely low scattering vector. This is reasonable as the scattering angles were very small—as low as 0.5 degrees. Nevertheless, there could in principle be strong scattering at still lower angles.Google Scholar
20. The procedure for making dust-free PBLG/toluene gels is quite involved. PBLG is precleaned by filtering a solution in DMF into scrupulously clean water, usually using a 0.2 or 0.45 μn Teflon filter. The PBLG is vacuum dried and then dissolved in vacuum-distilled, filtered and centrifuged DMF at a concentration near the final desired PBLG/toluene value. This is filtered into a precleaned and tested light scattering cell. A small amount of ultraclean water is added to precipitate the PBLG and the polymer is vacuum dried to constant weight. Toluene is added via 0.1 μm filters, the sample cell is sealed under vacuum and annealed at ca. 80 - 90°C to dissolve the PBLG.Google Scholar
21. See, for example, Smith, L. M., Parce, J. W., Smith, B. A. and McConnell, H. M., Proc. Nat. Acad. Sci. (USA), 76 (9), 4177 (1979).Google Scholar
22. Kinetics of Aggregation and Gelation, edited by Family, F. and Landau, D. P. (North Holland, New York, 1984).Google Scholar
23. Mandelbrot, B. B., The Fractal Geometry of Nature (Freeman, New York, 1983).Google Scholar
24. Cohen, Y., Talmon, Y., Thomas, E. L., in Thermoreversible Polymer Gels, Burchard, W., Ross-Murphy, S. B., eds. (Elsevier Applied Science, New York, in press).Google Scholar
25. Russo, P. S., Ph.D. Thesis, University of Minnesota, 1981.Google Scholar
26. Meakin, P. and Wasserman, Z. R., Phys. Lett. A, 103, 337 (1984).CrossRefGoogle Scholar
27. Meakin, P., Phys. Rev. Lett., 26, 1119 (1983).Google Scholar
28. For an entry into the literature, see Weitz, D. A., Lin, M. A. and Sandroff, C. J., Surface Science, 158, 147 (1985).Google Scholar
29. Schaefer, D. W. and Keefer, K. D., Phys. Rev. Lett., 53, 1383 (1984); D. W. Schaefer, J. E. Martin, P. Wiltzius and D.S. Cannell, ibid., 52, 2371 (1984).Google Scholar
30. Meakin, P., J. Chem. Phys., 83 (7), 3645 (1985).Google Scholar
31. Binder, K., Coll. and Polym. Sci., 265, 273 (1987) and references therein.Google Scholar
32. a)Shimada, T., Doi, M. and Okano, K., J. Chem. Phys., 88 (4), 2815 (1988). b)M. Doi, T. Shimada and K. Okano, J. Chem. Phys., 88 (6), 4070 (1988). c)T. Shimada, M. Doi and K. Okano, J. Chem. Phys., 88 (11), 7181 (1988).CrossRefGoogle Scholar
33. The intensity growth rate R(q) is the eigenvalue of the motion equation for the dynamic structure factor, called A(k) in Ref. 32.Google Scholar
34. Chowdhury, A. H. and Russo, P. S., Am. Chem. Soc. Polym. Mat. Sci. & Engr. Prepr., 59, 1045 (1988).Google Scholar
35. Chowdhury, A. H. and Russo, P. S., to be submitted.Google Scholar
36. Lifshitz, I. M. and Slyozov, V.V., J. Phys. Chem. Solids, 19, 35 (1961).CrossRefGoogle Scholar
37. Siggia, E. D., Phys. Rev. A, 20 (2), 595 (1979).Google Scholar
38. Ohta, T. and Kawasaki, K., Physics Letters, 64A (4), 404 (1978); Prog. Theor. Phys., 59 (2), 362 (1978).CrossRefGoogle Scholar
39. Furukawa, H., Physica, 123A, 497 (1984).Google Scholar
40. Chuah, H.-H., Kyu, T., Helminiak, T. E., Polymer, to appear.Google Scholar
41. Russo, P. S. and Miller, W. G., Macromolecules, 17, 1324 (1984).Google Scholar
42. Hill, A. and Donald, A. M., Mol. Cryst. Liq. Cryst., 153, 395 (1987).Google Scholar
43. See, for example, Einaga, Y., Berry, G. C. and Chu, S. G., Polym. J., 251, 239 (1985) and references therein.Google Scholar
44. Russo, P. S., Langley, K. H. and Karasz, F. E., J. Chem. Phys., 80, 5312 (1984); L. M. DeLong and P. S. Russo, to be submitted.Google Scholar
45. Evans, K. E. and Edwards, S. F., J. Chem. Soc. Faraday Trans. II, 78, 113 (1982).Google Scholar
46. Murthy, M. K. and Muthukumar, M., Macromolecules, 20, 564 (1987).Google Scholar
47. Chakrabarti, S. and Miller, W. G., Biopolymers, 23, 719 (1984).Google Scholar