Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T23:07:06.268Z Has data issue: false hasContentIssue false

Gas-phase Synthesis of Silver Nanoparticles for Plasmonic Biosensors

Published online by Cambridge University Press:  15 April 2013

Georgios A. Sotiriou
Affiliation:
Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology, Zurich (ETH Zurich)
Christoph O. Blattmann
Affiliation:
Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology, Zurich (ETH Zurich)
Sotiris E. Pratsinis
Affiliation:
Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology, Zurich (ETH Zurich)
Get access

Abstract

Silver (Ag) nanoparticles dispersed in an amorphous silica (SiO2) matrix or coated by a SiO2 layer were synthesized by flame spray pyrolysis (FSP). The coated nanoparticles were produced by using a modified enclosed FSP setup, in which the SiO2 precursor was injected through a ring above the FSP nozzle at various burner-ring-distances (BRDs), after the core Ag nanoparticles had been formed. The produced nanoparticles were characterized by XRD, BET, TEM and UV/vis analysis. The Ag particle size was possible to be controlled by tuning the FSP parameters. For the SiO2 coated nanoparticles, larger Ag core sizes were obtained for higher BRDs. All the produced nanoparticles exhibited the characteristic plasmon resonance frequency of Ag nanoparticles.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sun, Y. G.; Xia, Y. N. Shape-controlled synthesis of gold and silver nanoparticles Science 2002, 298, 21762179.CrossRefGoogle ScholarPubMed
Evanoff, D. D.; Chumanov, G. Synthesis and optical properties of silver nanoparticles and arrays ChemPhysChem 2005, 6, 12211231.CrossRefGoogle ScholarPubMed
LizMarzan, L. M.; Giersig, M.; Mulvaney, P. Synthesis of nanosized gold-silica core-shell particles Langmuir 1996, 12, 43294335.CrossRefGoogle Scholar
Sotiriou, G. A.; Hirt, A. M.; Lozach, P. Y.; Teleki, A.; Krumeich, F.; Pratsinis, S. E. Hybrid, silica-coated, Janus-like plasmonic-magnetic nanoparticles Chem. Mater. 2011, 23, 19851992.CrossRefGoogle ScholarPubMed
Sotiriou, G. A.; Pratsinis, S. E. Engineering nanosilver as an antibacterial, biosensor and bioimaging material Curr. Opin. Chem. Eng. 2011, 1, 310.CrossRefGoogle ScholarPubMed
Sotiriou, G. A.; Sannomiya, T.; Teleki, A.; Krumeich, F.; Vörös, J.; Pratsinis, S. E. Nontoxic dry-coated nanosilver for plasmonic biosensors Adv. Funct. Mater. 2010, 20, 42504257.CrossRefGoogle Scholar
Sotiriou, G. A. Biomedical applications of multifunctional plasmonic nanoparticles Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 2013, 5, 1930.Google ScholarPubMed
Sotiriou, G. A.; Pratsinis, S. E. Antibacterial activity of nanosilver ions and particles Environ. Sci. Technol. 2010, 44, 56495654.CrossRefGoogle ScholarPubMed
Sotiriou, G. A.; Teleki, A.; Camenzind, A.; Krumeich, F.; Meyer, A.; Panke, S.; Pratsinis, S. E. Nanosilver on nanostructured silica: Antibacterial activity and Ag surface area Chem. Eng. J. 2011, 170, 547554.CrossRefGoogle ScholarPubMed
Han, Y.; Jiang, J.; Lee, S. S.; Ying, J. Y. Reverse microemulsion-mediated synthesis of silica-coated gold and silver nanoparticles Langmuir 2008, 24, 58425848.CrossRefGoogle ScholarPubMed
Lu, Y.; Yin, Y. D.; Li, Z. Y.; Xia, Y. A. Synthesis and self-assembly of Au@SiO2 core-shell colloids Nano Lett. 2002, 2, 785788.CrossRefGoogle Scholar
Liu, S. H.; Han, M. Y. Synthesis, functionalization, and bioconjugation of monodisperse, silica-coated gold nanoparticles: Robust bioprobes Adv. Funct. Mater. 2005, 15, 961967.CrossRefGoogle Scholar
Sotiriou, G. A.; Franco, D.; Poulikakos, D.; Ferrari, A. Optically Stable Biocompatible Flame-Made SiO2-Coated Y2O3:Tb3+ Nanophosphors for Cell Imaging ACS Nano 2012, 6, 38883897.CrossRefGoogle ScholarPubMed
Madler, L.; Kammler, H. K.; Mueller, R.; Pratsinis, S. E. Controlled synthesis of nanostructured particles by flame spray pyrolysis J. Aerosol. Sci. 2002, 33, 369389.CrossRefGoogle Scholar
Strobel, R.; Pratsinis, S. E. Flame aerosol synthesis of smart nanostructured materials J. Mater. Chem. 2007, 17, 47434756.CrossRefGoogle Scholar
Teleki, A.; Heine, M. C.; Krumeich, F.; Akhtar, M. K.; Pratsinis, S. E. In-situ coating of flame-made TiO2 particles by nanothin SiO2 films Langmuir 2008, 24, 1255312558.CrossRefGoogle ScholarPubMed
Teleki, A.; Akhtar, M. K.; Pratsinis, S. E. The quality of SiO2-coatings on flame-made TiO2-based nanoparticles J. Mater. Chem. 2008, 18, 35473555.CrossRefGoogle Scholar
Teleki, A.; Suter, M.; Kidambi, P. R.; Ergeneman, O.; Krumeich, F.; Nelson, B. J.; Pratsinis, S. E. Hermetically coated superparamagnetic Fe2O3 particles with SiO2 nanofilms Chem. Mater. 2009, 21, 20942100.CrossRefGoogle Scholar
Yaws, C. L.; Narasimhan, P. K.; Gabbula, C. Yaws' Handbook of Antoine coefficients for vapor pressure (Electronic edition) Knovel 2005,Google Scholar
Quinten, M. The color of finely dispersed nanoparticles Appl. Phys. B-Lasers Opt. 2001, 73, 317326.CrossRefGoogle Scholar