Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-18T12:18:21.468Z Has data issue: false hasContentIssue false

Gas Phase Spectroscopy of a Ge Film LCVD Reactor

Published online by Cambridge University Press:  21 February 2011

J. F. Osmundsen
Affiliation:
University of Illinois, Urbana, IL 61801
C. C. Abele
Affiliation:
University of Illinois, Urbana, IL 61801
J. G. Eden
Affiliation:
University of Illinois, Urbana, IL 61801
Get access

Abstract

The gas phase photochemistry of an LCVD reactor used to grow polycrystalline Ge films was studied by absorption and emission spectroscopy. Upon photodissociating GeH4 (5% in an Ar or He carrier) at 248 nm (KrF laser), excited states of Ge and GeH are produced. Spatially, spectrally and temporally resolved atomic and molecular emissions are monitored as a function of gas pressure and laser intensity. These data lead to the conclusion that GeH2 is predominantly produced directly from GeH4 by The simultaneous absorption of two 5 eV (λ = 248 nm) photons.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ehrlich, D. J., Osgood, R. M. Jr. and Deutsch, T. F., IEEE J. Quant. Electron. QE–16, 1233 (1980).Google Scholar
2. Boyer, P. K., Roche, G. A., Ritchie, W. H. and Collins, G. J., Appl. Phys. Lett. 40, 716 (1982);Google Scholar
Solanki, R., Ritchie, W. H. and Collins, G. J., Appl. Phys. Lett. 43, 454 (1983).Google Scholar
3. Andreatta, R. W., Abele, C. C., Osmundsen, J. F., Eden, J. G., Lubben, D. and Greene, J. E., Appl. Phys. Lett. 40, 183 (1982).Google Scholar
4. Eden, J. G., Greene, J. E., Osmundsen, J. F., Lubben, D., Abele, C. C., Gorbatkin, S. and Desai, H. D., in Laser Diagnostics and Photochemical Processing for Semiconductor Devices, Osgood, R. M., Brueck, S. R. J. and Schlossberg, H. R., Eds., Mat. Res. Soc. Symp. Proc. 17, Elsevier (1983) pp. 185192.Google Scholar
5. Hellner, L., Masanet, J. and Vermeil, C., J. Chem. Phys. 55, 1022 (1971).Google Scholar
6. Rebbert, R. E. and Ausloos, P., J. Photochem. 1, 171 (1972);Google Scholar
see p. 174 and References 13–15.Google Scholar
7. Karplus, S. and Bersohn, R., J. Chem. Phys. 51, 2040 (1969).Google Scholar
8. Dubois, I., Can. J. Phys. 46, 2485 (1968) and references cited therein.Google Scholar
9. Keefe, J. F. O' and Lampe, F. W., Appl. Phys. Lett. 42, 217 (1983).Google Scholar
10. Neudorfl, P., Jodhan, A. and Strausz, O. P., J. Phys. Chem. 84, 338 (1980).Google Scholar
11. Experimental Transition Probabilities for Spectral Lines of Seventy Elements, NBS Monograph 53, Corliss, C. H. and Bozman, W. R., eds., U. S. Government Printing Office, Washington, DC (1962), p. 135.Google Scholar