Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-18T03:14:54.653Z Has data issue: false hasContentIssue false

GaN Photonic Crystal-Based, Enhanced Fluorescence Biomolecule Detection System

Published online by Cambridge University Press:  01 February 2011

J. M. Dawson
Affiliation:
jnightin@mix.wvu.edu, West Virginia University, Lane Department of Computer Science and Electrical Engineering, West Virginia University, Computer Science and Electrical Engineering, 711 Engineering Science Bldg., Morgantown, WV, 26506, United States
J. R. Nightingale
Affiliation:
jnightin@mix.wvu.edu, West Virginia University, Lane Department of Computer Science and Electrical Engineering, Morgantown, WV, 26506, United States
R. P. Tompkins
Affiliation:
randyto@hotmail.com, West Virginia University, Department of Physics, Morgantown, WV, 26506, United States
X. Cao
Affiliation:
XACao@mail.wvu.edu, West Virginia University, Lane Department of Computer Science and Electrical Engineering, Morgantown, WV, 26506, United States
T. H. Myers
Affiliation:
Thomas.Myers@mail.wvu.edu, West Virginia University, Department of Physics, Morgantown, WV, 26506, United States
L. A. Hornak
Affiliation:
lah@csee.wvu.edu, West Virginia University, Lane Department of Computer Science and Electrical Engineering, Morgantown, WV, 26506, United States
D. Korakakis
Affiliation:
Dimitris.Korakakis@mail.wvu.edu, West Virginia University, Lane Department of Computer Science and Electrical Engineering, Morgantown, WV, 26506, United States
Get access

Abstract

The need for small form factor, portable biosensing platforms is prevalent across a wide range of medical, environmental, and defense applications. This paper presents the design of a novel, integrated optofluidic photonic crystal biosensor architecture that shows potential for meeting the single molecule detection requirements of these application areas. GaN is being targeted as the photonic crystal slab material due to its transparency in the visible spectral range and also the potential for creating high aspect ratio photonic crystal lattices via polarity inverted MBE growth. Results of optical modeling efforts indicating 10-15x resonant enhancement of fluorescent emission and polarity inversion GaN growth techniques will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mohanty, S.P. and Kougianos, E., “Biosensors: A tutorial review,” IEEE Potentials, Vol. 25, No. 2, 35 (2006).10.1109/MP.2006.1649009Google Scholar
2. Bernini, R., Cennamo, N., Minardo, A., and Zeni, L., “Planar Waveguides for Fluorescence-Based Biosensing: Optimization and Analysis,” IEEE Sensors Journal, Vol. 6, No. 5, 1218 (2006).Google Scholar
3. Psaltis, D., Quake, S.R., and Yang, C., “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature, Vol. 442, No. 27, 381 (2006).Google Scholar
4 Yablonovitch, E., “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett., Vol. 58, No. 20, 2059 (1987).Google Scholar
5. Loncar, M., Scherer, A., and Qiu, Y., “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett., Vol. 82, No. 26, 4648 (2003).Google Scholar
6. Skorobogatiy, M. and Kbashin, A. V., “Photonic crystal waveguide-based surface plasmon resonance biosensor,” Appl. Phys. Lett., Vol. 89, 143518 (2006).Google Scholar
7. Mathias, P.C., Ganesh, N., Chan, L.L., and Cunningham, B.T., “Combined enhanced fluorescence and label-free biomolecular detection with a photonic crystal surface,” Applied Optics, Vol. 46, No. 12, 2351 (2007).10.1364/AO.46.002351Google Scholar
8. Purcell, E. M., “Spontaneous emission probabilities at radio frequencies,” Phys. Rev., Vol. 69, 681 (1947).Google Scholar
9. Patounakis, G., Shepard, K.L., and Levicky, R., “Active CMOS Array Sensor for Time-Resolved Fluorescence Detection,” IEEE Journ. of Solid-State Circuits, Vol. 41, No. 11, 2521 (2006).10.1109/JSSC.2006.883316Google Scholar
10. Ng, H.M., Parz, W., Weimann, N.G., and Chowdhury, A., “Patterning GaN Microstructures by Polarity-Selective Chemical Etching,” Jpn. J. Appl. Phys., Vol. 42, L1405 (2003).Google Scholar
11. Myers, T., Tompkins, R., Lee, K., Nightingale, J. R., Starn, S., Farmer, B., Hennessee, S., Lederman, D., Hornak, L. A., Korakakis, D., Cao, A., and Dawson, J. M., “Polarization-based Structures – A Path to Multifunctional Nanoscale Devices,” WVEPSCoR STaR Symposium 2007 ProceedingsGoogle Scholar
12. Romano, L. T. and Myers, T. H., Appl. Phys. Lett., Vol. 71, 3486 (1997).Google Scholar
13. Park, M., Cuomo, J. J., Rodriguez, B. J., Yang, W., Nemamanich, R. J., Ambacher, O., J. Appl. Phys.. Vol. 93, 9542 (2003).Google Scholar
14. Yang, W. C., Rodriguez, B. J., Park, M., Nemanich, R. J., Ambacher, O., Cimalla, V., J. Appl. Phys., Vol. 94, 5720 (2003).Google Scholar
15. Ramachandran, V., Feenstra, R. M., Sarney, W. L., Salamanca-Riba, L., Northrup, J. E., Romano, L. T. and Greve, D. W., Appl. Phys. Lett. 75, 808 (1999).Google Scholar
16. Romano, L.T., Northrup, J.E., Ptak, A.J. and Myers, T.H., Appl. Phys. Lett. 77, 2479 (2000)10.1063/1.1318731Google Scholar
17. Pezzagna, S., Vennéguès, P., Grandjean, N., Wieck, A. D., and Massies, J., Appl. Phys. Lett. 87, 062106 (2005)Google Scholar
18. Hahn, B., Choi, R. J., Hong, J. H., Park, H. J., Choi, C. S. and Lee, H. J.: J. Appl. Phys. 92 (2002) 1189.10.1063/1.1491585Google Scholar
19. Hellman, E. S., MRS Internet J. Nitride Semicond. Res. 3, 11 (1998).10.1557/S1092578300000831Google Scholar
20. Ng, H. M., Weimann, N. G., and Chowdhury, A., J. Appl. Phys. 94, 650 (2003).10.1063/1.1582233Google Scholar