Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-08T21:09:51.633Z Has data issue: false hasContentIssue false

GaN Decomposition in Ammonia

Published online by Cambridge University Press:  03 September 2012

D.D. Koleske
Affiliation:
Code 6861, Electronic Science and Technology Division, Naval Research Laboratory, Washington, D.C. 20375
A.E. Wickenden
Affiliation:
Code 6861, Electronic Science and Technology Division, Naval Research Laboratory, Washington, D.C. 20375
R.L. Henry
Affiliation:
Code 6861, Electronic Science and Technology Division, Naval Research Laboratory, Washington, D.C. 20375
Get access

Abstract

GaN decomposition is studied as a function of pressure and temperature in mixed NH3 and H2 flows more characteristic of the MOVPE growth environment. As NH3 is substituted for the 6 SLM H2 flow, the GaN decomposition rate at 1000 °C is reduced from 1x1016 cm-2s-1 (i.e. 9 monolayers/s) in pure H2 to a minimum of 1x1014 cm-2s-1 at an NH3 density of 1x1019 cm-3. Further increases of the NH3 density above 1x1019 cm-3 result in an increase in the GaN decomposition rate. The measured activation energy, EA, for GaN decomposition in mixed H2 and NH3 flows is less than the EA measured in vacuum and in N2 environments. As the growth pressure is increased under the same H2 and NH3 flow conditions, the decomposition rate increases and the growth rate decreases with the addition of trimethylgallium to the flow. The decomposition in mixed NH3 and H2 and in pure H2 flows behave similarly, suggesting that surface H plays a similar role in the decomposition and growth of GaN in NH3.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Nakamura, S., Senoh, M., Iwasa, N., Nagahama, S., Yamada, T., and Mukai, T., Jpn. J. Appl. Phys., 34, L1332 (1995).Google Scholar
[2] Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Matushita, T., and Mukai, T., MRS Internet J. Nitride Semicond. Res. 4S1, G1.1 (1999).Google Scholar
[3] Mohammad, S.N., Salvador, A.A., and Morkoc, H., Proc. IEEE 83, 1306 (1995).Google Scholar
[4] Liu, S. S. and Stevenson, D. A., J. Electrochem. Soc. 125, 1161 (1978).Google Scholar
[5] For H-NH2 the bond strength is 4.8 eV. CRC Handbook of Chemistry and Physics, 66th edition, edited by Weast, R.C., (CRC Press, Cleveland, 1986).Google Scholar
[6] Groh, R., Gerey, G., Bartha, L., and Pankove, J. I., Phys. Status Solidi A 26, 353 (1974).Google Scholar
[7] Grandjean, N., Massies, J., Semond, F., Karpov, S. Yu., and Talalaev, R.A., Appl. Phys. Lett. 74, 1854 (1999).Google Scholar
[8] Koleske, D.D., Wickenden, A.E., Henry, R.L., Twigg, M.E., Culbertson, J.C., and Gorman, R.J., Appl. Phys. Lett. 73, 2018 (1998), erratum: Appl. Phys. Lett. 75, 2018 (1999).Google Scholar
[9] Koleske, D.D., Wickenden, A.E., Henry, R.L., Twigg, M.E., Culbertson, J.C., and Gorman, R.J., MRS Internet J. Nitride Semicond. Res. 4S1, G3.70 (1999); http://nsr.mij.mrs.org/4S1/G3.70/Google Scholar
[10] For a discussion of the surface kinetics of GaN growth, see Koleske, D.D., Wickenden, A.E., Henry, R.L., DeSisto, W.J., and Gorman, R.J., J. Appl. Phys. 84, 1998 (1998).Google Scholar
[11] Rebey, A., Boufaden, T., Jani, B. El, J. Cryst. Growth 203, 12 (1999).Google Scholar
[12] Briot, O., Clur, S., and Aulombard, R.L., Appl. Phys. Lett. 71, 1990 (1997).Google Scholar
[13] Wickenden, A.E., Koleske, D.D., Henry, R.L., Gorman, R.J., Culbertson, J.C., and Twigg, M.E., Freitas, J. A. Jr., Electron. Mat. 28, 301 (1999).Google Scholar
[14] Thurmond, C.D., Logan, R.A., J. Electrochem. Soc. 119, 622 (1972); R. A. Logan and C.D. Thurmond, J. Electrochem. Soc. 119, 1727 (1972).Google Scholar
[15] Bartram, M.E. and Creighton, J. R., MRS Internet J. Nitride Semicond. Res. 4S1, G3.68 (1999).Google Scholar
[16] Kim, C.S., Bermudez, V.M., and Russell, J.N. Jr., Surf. Sci. 389, 162 (1997).Google Scholar
[17] Ambacher, O., Brandt, M.S., Dimitrov, R., Metzger, T., Stutzmann, M., Fischer, R.A., Miehr, A., Bergmaier, A., and Dollinger, G., J. Vac. Sci. Technol B 14, 3532 (1996).Google Scholar
[18] Hashimoto, M., Amano, H., Sawaki, N., and Akasaki, I., J. Cryst. Growth 68, 163 (1984).Google Scholar
[19] Khan, M.A., Skogman, R.A., Schulze, R.G., and Gershenzon, M., Appl. Phys. Lett. 43, 493 (1983).Google Scholar
[20] Briot, O., Clur, S., and Aulombard, R.L., Appl. Phys. Lett. 71, 1990 (1997).Google Scholar
[21] Kistenmacher, T. J., Wickenden, D.K., Hawley, M.E., and Leavitt, R.P., Mat. Res. Soc. Symp. Proc. 395, 261 (1996).Google Scholar
[22] Tadatomo, K., Ohuchi, Y., Okagawa, H., Itoh, H., Miyake, H., and Hiramatsu, K., MRS Internet J. Nitride Semicond. Res. 4S1, G3.1 (1999); http://nsr.mij.mrs.org/4S1/G3.1/Google Scholar
[23] Schön, O. Schineller, B., Heuken, M., and Beccard, R., J. Cryst. Growth 189/190, 335 (1998).Google Scholar
[24] Bell, L.D., Smith, R.P., McDermott, B.T., Gertner, E.R., Pittman, R., Pierson, R.L., and Sullivan, G.J., J. Vac. Sci. Technol. B 16, 2286 (1998).Google Scholar
[25] Ng, T.-B., Han, J., Biefeld, R.M., and Weckwerth, M.V., J. Electronic Mat. 27, 190 (1998).Google Scholar