Hostname: page-component-84b7d79bbc-l82ql Total loading time: 0 Render date: 2024-07-26T06:15:06.254Z Has data issue: false hasContentIssue false

Functionalization of 3-D Structures for Grafting of Biological Molecules

Published online by Cambridge University Press:  01 February 2011

Cécile Oillic
Affiliation:
cecile.oillic@cea.fr, CEA-Grenoble, CEA-DRT-LETI, 17, rue des Martyrs, Grenoble Cedex9, N/A, 38054, France
Pierre Mur
Affiliation:
pmur@cea.fr, CEA-Grenoble, CEA-DRT-LETI, France
Elisabeth Blanquet
Affiliation:
elisabeth.blanquet@ltpcm.inpg.fr, CNRS, LTPCM/ENSEEG/INPG, France
Guillaume Delapierre
Affiliation:
guillaume.delapierre@cea.fr, CEA-Grenoble, CEA-DRT-LETI, France
Françise Vinet
Affiliation:
francoise.vinet@cea.fr, CEA-Grenoble, CEA-DRT-LETI, France
Thierry Billon
Affiliation:
thierry.billon@cea.fr, CEA-Grenoble, CEA-DRT-LETI, France
Get access

Abstract

Even though most microarrays present good quality, accuracy and reliability, they are made on a planar surface structure, which neither enough increases the accessibility of the targets to the probes nor the loading capacity of the solid support. To achieve a high density of reactive functions, the use of a non-planar structure is investigated to increase the available surface area for grafting of biomolecules. We propose to build up a pseudo-three-dimensional silicon structure, covered with a specific oxide layer, and then functionalized, allowing to introduce covalent and stable bindings of amino-modified oligonucleotides probes on the reactive layer of the support. The performances of these supports after silanisation are investigated by means of hybridization experiments using complementary fluorescent labeled-oligonucleotides targets. Our results indicate that these novel surfaces provide a higher specific surface area for attaching biomolecules and higher accessibility of the targets, which will increase the density of biomolecules and hence, the sensitivity of the fluorescence signal in comparison to the results obtained with a planar surface structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Souteyrand, E., Analusis 27, 639646 (1999).Google Scholar
2. Berre, V. Le, Trévisol, E., Dagkessamanskaia, A., Sokol, S., Caminade, A. M., Majoral, J. P., Meunier, B. and François, J., Nucleic Acids Res. 31, (2003).Google Scholar
3. Ino, M., Miyano, J., Tamura, H. and Nagatomo, Y., J. Vac. Sci. Technol. B 14, (1996).Google Scholar
4. Mansoori, M. M., Banerjee, A., Shimizu, A., Mori, Y., Wise, R. L., Pas, M. F. and Chatterjee, B., J. Electrochem. Soc. 146, 38273832 (1999).Google Scholar
5. Strausser, Y. E., Schroth, M. and Sweeney, J. J., J. Vac. Sci. Technol. A 15, 10071013 (1997).Google Scholar
6. Gabette, L., Mémoire de Diplôme de Recherche Technologique, Université Joseph Fourier - Grenoble (2003)Google Scholar
7. Mazen, F., Baron, T., Brémond, G., Buffet, N., Rochat, N., Mur, P. and Séméria, M. N., J. Electrochem. Soc. 150, G203–G208 (2003).Google Scholar
8. Baron, T., Martin, F., Mur, P., Wyon, C. and Dupuy, M., J. Cryst. Growth 209, 10041008 (2000).Google Scholar
9. Bras, M., Dugas, V., Bessueille, F., Cloarec, J. P., Martin, J. R., Cabrera, M., Chauvet, J. P., Souteyrand, E. and Garrigues, M., Biosens. Bioelectron. 20, 797806 (2004).Google Scholar
10. Lambacher, and Fromherz, P., Appl. Phys. A 63, 207216 (1996).Google Scholar
11. Volle, J. N., Chambon, G., Sayah, A., Reymond, C., Fasel, N. and Gijs, M. A. M., Biosens. Bioelectron. 19, 457464 (2003).Google Scholar
12. Rochat, N., Troussier, A., Hoang, A. and Vinet, F., Mater. Sci. Eng. C 23, 99103 (2003).Google Scholar
13. Peterson, Heaton, R. and Georgiadis, R., Nucleic Acids Res. 29, 51635168 (2001).Google Scholar
14. Shchepinov, M. S., Case-Green, S. C. and Southern, E. M., Nucleic Acids Res. 25, 11551161 (1997).Google Scholar
15. Zammateo, N., Jeanmart, L., Hamels, S., Courtois, S., Louette, P., Hevesi, L. and Remacle, J., Anal. Biochem. 280, 143150 (2000).Google Scholar