Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T12:03:16.367Z Has data issue: false hasContentIssue false

Functional Fatigue of Shape-Memory Polymers

Published online by Cambridge University Press:  31 January 2011

Christina Schmidt
Affiliation:
christina.schmidt@ruhr-uni-bochum.de, Ruhr-University Bochum, Institute for Materials, Universitaetsstr. 150, Bochum, 44780, Germany
Klaus Neuking
Affiliation:
klaus.neuking@ruhr-uni-bochum.de, Ruhr-University Bochum, Institute for Materials, Bochum, Germany
Gunther Eggeler
Affiliation:
gunther.eggeler@ruhr-uni-bochum.de, Ruhr-University Bochum, Institute for Materials, Bochum, Germany
Get access

Abstract

The present study represents a first step towards an understanding of what we refer to as the functional fatigue behaviour of shape-memory polymers. These materials have a processing shape B and a programmed shape A [1]. And when the material is exposed to an appropriate stimulus (in our case: heating above a critical temperature), a one way effect is observed: A → B (one way effect: 1WE). The objectives of the present study were to find out whether and how often programming can be repeated, whether repeated programming affects the 1WE and how much irreversible strain the material accumulates. We study the effect in dependence of different stress levels, and consider the effect of recovery temperature and recovery time. As a model material we examine the commercial amorphous shape-memory polymer Tecoflex® and subject it to 50 programming/1WE cycles. It turns out that programming, cooling, unloading and heating to trigger the 1WE causes an increase of irreversible strain and is associated with a corresponding decrease of the intensity of the 1WE in particular during the first thermomechanical cycles. 1. M. Behl and A. Lendlein, materials today 10, 20 (2007).

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Behl, M. and Lendlein, A., materials today 10, 20 (2007).10.1016/S1369-7021(07)70047-0Google Scholar
2 Behl, M. and Lendlein, A., Soft Matter 3, 58 (2007).10.1039/B610611KGoogle Scholar
3 Koerne, H., Price, G., Pearce, N., Alexander, M. and Vaia, R. A., Nat. Mater. 2, 115 (2004).10.1038/nmat1059Google Scholar
4 R. Buckley, P., McKinley, G. H., Wilson, T. S., Small IV, W., Benett, W. J., Bearinger, J. P., McElfresh, M.W. and Maitland, D. J., IEEE Trans. Biomed. Eng. 53, 2075 (2006).10.1109/TBME.2006.877113Google Scholar
5 Ahir, S. V. and Terentjev, E. M., Nat. Mater. 6, 491 (2005).10.1038/nmat1391Google Scholar
6 Wang, Y., Hu, Y., Gong, X., Jiang, W., Zhang, P. and Chen, Z., J. Appl. Polym. Sci. 103, 3143 (2007).10.1002/app.24598Google Scholar
7 Luand, T. J. and Evans, A. G., Sens. Actuators A 99, 290 (2002).Google Scholar
8 Harris, K. D., M. Bastiaansen, C. W. and Broer, D. J., J. Microelectromech. Syst. 16, 480 (2007).10.1109/JMEMS.2006.886033Google Scholar
9 Hu, J., in Shape Memory Polym. and Textiles (Woodhead Publishing Limited and CRC Press LLC), (2007).10.1533/9781845693060Google Scholar
10 Neuking, K., Abu-Zarifa, A., Youcheu-Kemtchou, S. and Eggeler, G., Adv. Eng. Mat. 7, 1014 (2005).10.1002/adem.200500130Google Scholar
11 Lendlein, A. and Kelch, S., Angew. Chem. 114, 2138 (2002).10.1002/1521-3757(20020617)114:12<2138::AID-ANGE2138>3.0.CO;2-T3.0.CO;2-T>Google Scholar
12 Coury, A. J., Slaikeu, P. C., Cahalan, P. T., Stokes, K. B., Hobot, C. M., J. Biomater. Appl. 3, 130 (1988)10.1177/088532828800300202Google Scholar
13 Miaudet, P., Derré, A., Maugey, M., Zakri, C., Piccione, P. M., Inoubli, R., Poulin, P., Science 318, 1294 (2007)10.1126/science.1145593Google Scholar
14 Mohr, R., Kratz, K., Weigel, T., Lucka-Gabor, M., Moneke, M., Lendlein, A., PNAS 103, 3540 (2006).10.1073/pnas.0600079103Google Scholar
15 Reddy, A., Arzt, E., Campo, A. del, Adv. Mater. 19, 3833 (2007).10.1002/adma.200700733Google Scholar
16 Solis-Correa, R. E. et al., J. Biomater. Sci. Polymer Edn. 18, 561 (2007).10.1163/156856207780852488Google Scholar
17 Lamba, N.M.K., Woodhouse, K. A., Cooper, S. L., in Polyurethanes in Biomedical Applications (CRC Press), (1998).Google Scholar