Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-28T17:55:36.820Z Has data issue: false hasContentIssue false

Full Band Monte Carlo Comparison of Wurtzite and Zincblende Phase GaN MESFETs

Published online by Cambridge University Press:  03 September 2012

Maziar Farahmand
Affiliation:
School of Electrical and Computer Engineering 777 Atlantic Dr. Georgia Tech Atlanta, GA 30332-0250, U.S.A.
Kevin F. Brennan
Affiliation:
School of Electrical and Computer Engineering 777 Atlantic Dr. Georgia Tech Atlanta, GA 30332-0250, U.S.A.
Get access

Abstract

The output characteristics, cutoff frequency, breakdown voltage and the transconductance of wurtzite and zincblende phase GaN MESFETs have been calculated using a self-consistent, full band Monte Carlo simulation. It is found that the calculated breakdown voltage for the wurtzite device is considerably higher than that calculated for a comparable GaN zincblende phase device. The zincblende device is calculated to have a higher transconductance and cutoff frequency than the wurtzite device. The higher breakdown voltage of the wurtzite phase device is attributed to the higher density of electronic states for this phase compared to the zincblende phase. The higher cutoff frequency and transconductance of the zincblende phase GaN device is attributed to more appreciable electron velocity overshoot for this phase compared to that for the wurtzite phase. The maximum cutoff frequency and transconductance of a 0.1 μm gate-length zincblende GaN MESFET are calculated to be 220GHz and 210 mS/mm, respectively. The corresponding quantities for the wurtzite GaN device are calculated to be 160GHz and 158 mS/mm.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Weitzel, C. E., Inst. Phys. Conf. Ser. No. 142:Chapter 4, 765, (1996).Google Scholar
2. Brown, E. R., Solid-State Electron., 42, 2119, (1998).Google Scholar
3. Shenai, K., Scott, R. S., and Baliga, B. J., IEEE Trans. Electron Devices, 36, 1811, (1989).Google Scholar
4. Schwierz, F., Kittler, M., Forster, H., and Schipinski, D., Diamond and Rel. Mater., 6, 1512, (1997).Google Scholar
5. Dessenne, F., Cichocka, D., Desplanques, P., and Fauquembergue, R., Mat. Sci. Eng., B50, 315, (1997).Google Scholar
6. Farahmand, M. and Brennan, K. F., IEEE Trans. Electron Devices, 46, 1319, (1999).Google Scholar
7. Farahmand, M. and Brennan, K. F., submitted to IEEE Trans. Electron Devices, 1999 (unpublished).Google Scholar
8. Smith, A. W. and Brennan, K. F., Prog. Quantum Electr., 21, 293, (1998).Google Scholar
9. Brennan, K. F, Kolnik, J., Oguzman, I.H., Bellotti, E., Farahmand, M., Ruden, P. P., Wang, R., and Albrecht, J. D., in GaN and Related Materials II-Volume 7, edited by Pearton, S. J. (Gordon and Breach, Amsterdam, 2000) pp. 305359.Google Scholar
10. Fischetti, M. V. and Laux, S. E., Phys. Rev. B, 38, 9721, (1988).Google Scholar
11. Kolnik, J., Oguzman, I. H., Brennan, K. F., Wang, R., and Ruden, P. P., J. Appl. Phys., 81, 726, (1997).Google Scholar
12. Oguzman, I. H., Bellotti, E., Brennan, K. F., Kolnik, J., Wang, R., and Ruden, P. P., J. Appl. Phys., 81, 7827, (1997).Google Scholar
13. Bellotti, E., Doshi, B. K., Brennan, K. F., Albrecht, J. D., and Ruden, P. P., J. Appl. Phys., 85, 916, (1999).Google Scholar
14. Oguzman, I. H., Kolnik, J., Brennan, K. F., Wang, R., Fang, T.-N., and Ruden, P. P., J. Appl. Phys., 80, 4429, (1996).Google Scholar
15. Brennan, K. F., Bellotti, E., Farahmand, M., Nilsson, H-E., Ruden, P. P. and Zhang, Y., submitted to IEEE Trans. Electron Dev., Special issue on Computational Electronics, 1999 (unpublished).Google Scholar
16. Laux, S. E., IEEE Trans. Electron Dev., 32, 2028, (1985).Google Scholar
17. Foutz, B. E., Eastman, L. F., Bhapkar, U. V., and Shur, M. S., Appl. Phys. Lett., 70, 2849, (1997).Google Scholar