Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-08T03:53:48.343Z Has data issue: false hasContentIssue false

Frequency-Dependent Electromechanical Response in Ferroelectric Materials Measured via Piezoresponse Force Microscopy

Published online by Cambridge University Press:  01 February 2011

I. K. Bdikin
Affiliation:
Department of Ceramics and Glass Engineering/CICECO, University of Aveiro, 3810–193 Aveiro, Portugal
V. V. Shvartsman
Affiliation:
Department of Ceramics and Glass Engineering/CICECO, University of Aveiro, 3810–193 Aveiro, Portugal
S-H. Kim
Affiliation:
INOSTEK Inc., Gyeonggi Technopark, 1271–11 Sa 1, Sangnok, Ansan, Gyeonggi 425–791, Korea
J. Manuel Herrero
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid, Spain
A. L. Kholkin
Affiliation:
Department of Ceramics and Glass Engineering/CICECO, University of Aveiro, 3810–193 Aveiro, Portugal
Get access

Abstract

Local piezoelectric signal is measured via Piezoresponse Force Microscopy (PFM) in PbZr0.3Ti0.7O3 films and PbZr1/3Nb2/3O3-0.045PbTiO3 single crystals. It is observed that the amplitude of piezoelectric response is almost independent on frequency for vertical (out of plane) signal and strongly decreases with increasing frequency in the range 10–100 kHz for lateral (in-plane) response. Moreover, the in-plane piezoelectric contrast is reversed when the measurements are done at high enough frequency (phase shift exceeds 90°). As a result, the inplane polarization direction can be misinterpreted if the driving frequency exceeds certain level. For the explanation of observed effect a simple model is proposed that takes into account a possible slip between the conductive PFM tip and moving piezoelectric surface. The implications of the observed frequency-dependent contrast for the domain imaging in ferroelectric materials are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gruverman, A., Rodriguez, B., Kingon, A., Nemanich, R., Cross, J., and Horii, Y., Proc. of the 10th European Meeting on Ferroelectricity, Cambridge, UK, Aug. 2003 (in press).Google Scholar
2. Rosenman, G., Urenski, P., Agronin, A., Arie, A., and Rosenwaks, Y., Appl. Phys. Lett. 82, 3934 (2003).Google Scholar
3. Hong, J. W., Kahng, D. S., Shin, J. C., Kim, H. J., Khim, Z. G., J. Vac. Sci. Technol. B16, 2942 (1998).Google Scholar
4. Guther, P. and Dransfield, K., Appl. Phys. Lett. 61, 1137 (1992);Google Scholar
Franke, K., Besold, J., Haessler, W., and Seegebarth, C., Surf. Sci. Lett. 302, L283 (1994).Google Scholar
5. Abplanalp, M., Eng, L. M., and Guenter, P., Appl. Phys. 66, S231 (1998);Google Scholar
Eng, L. M., Abplanalp, M., and Guenter, P., Appl. Phys. 66, S679 (1998);Google Scholar
6. Harnagea, C., Alexe, M., Hesse, D., and Pignolet, A., Appl. Phys. Lett. 83, 338 (2003).Google Scholar
7. INOSTEK Inc. PZT film data sheet, 2002.Google Scholar
8. Bdikin, I. K., Shvartsman, V.V., and Kholkin, A. L., Appl. Phys. Lett. 83, 4232 (2003).Google Scholar
9. Kholkin, A. L., Wuetchrich, Ch., Taylor, D. V., and Setter, N., Rev. Sci. Instrum. 67, 1935 (1996).Google Scholar
10. Kholkin, A., Ferroelectrics 221, 219 (1999).Google Scholar
11. Goddenhenrich, T., Muller, S., and Heiden, C., Rev. Sci. Instrum. 65, 2870 (1994).Google Scholar
12. Yamanaka, K. and Tomita, E., Jap. J. Appl. Phys. 34, 2879 (1995).Google Scholar
13. Colchero, J., Luna, M., and Baro, A. M., Appl. Phys. Lett. 68, 2896 (1996).Google Scholar
14. Sherer, V., Arnold, W., and Bhushan, B., Surf. and Interface Anal. 27, 578 (1999).Google Scholar
15. Krotil, H.-U., Stifter, T., and Marti, O., Rev. Sci. Instrum. 72, 150 (2001).Google Scholar
16. Reinstadtler, M., Rabe, U., Scherer, V., Hartmann, U., Goldade, A., Bhushan, B., and Arnold, W., Appl. Phys. Lett. 82, 2604 (2003).Google Scholar
17. Bdikin, I. K., Shvartsman, V.V., and Kholkin, A. L. (unpublished).Google Scholar
18. Holland, R., IEEE Trans. Sonics Ultrason SU–14, 18 (1967).Google Scholar
19. Hamano, K. and Yamaguchi, T., Ferroelectrics 42, 23 (1982).Google Scholar
20. Damjanovic, D., Demartin Maeder, M., Duran Martin, P., Voisard, C., and Setter, N., J. Appl. Phys. 90, 5708 (2001).Google Scholar
21. Steinhauer, D. E., Vlahacos, C. P., Wellstood, F. C., Anlage, S. M., Canedy, C., Ramesh, R., Stanishevsky, A., and Melngailis, J., Rev. Sci. Instrum. 71, 2751 (2000).Google Scholar
22. Li, J-F., Viehland, D. D., Tani, T., Lakeman, C. D. E., and Payne, D. A., J. Appl. Phys. 75, 442 (1994).Google Scholar
23. Roelofs, A., Bottger, U., Waser, R., Schlaphof, F., Trogisch, S., and Eng, L. M., Appl. Phys. Lett. 77, 3444 (2000).Google Scholar