Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-20T19:47:26.465Z Has data issue: false hasContentIssue false

Forms of Hydrogen and Hydrogen Diffusion in Realistic Models of a-Si:H

Published online by Cambridge University Press:  17 March 2011

P. A. Fedders*
Affiliation:
Department of Physics, Washington University, St. Louis, MO 63130, U.S.A
Get access

Abstract

Using ab initio density functional calculations we investigate the energetics of hydrogen in a-Si:H starting from a basic supercell that contains 142 atoms and is completely free of defects. The study includes isolated H atoms bonded to dangling bonds, H atoms bonded to dangling bonds in regions of clustered H, bond centered hydrogen, and molecular hydrogen. In particular, the difference between clustered and isolated hydrogen has been largely ignored in the past. Energetics of doped as well as undoped cells are considered. The results are discussed with particular emphasis on H diffusion and the replacement of atoms in molecular hydrogen with those bonded.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.See, for example, Tuttle, Blair and Adams, James B., Phys. Rev. B 57, 18859 (1998) and references therein. Hereafter this will be denoted as TA.Google Scholar
2. Śnchez-Portal, D., Ordejón, P., Artacho, E., and Soler, J. M., Int. Quant. Chem. 65, 453 (1997).Google Scholar
3. Artacho, E., Śnchez-Portal, D., Ordejón, P., Garcia, A., and Soler, J. M., Condmot/9904159 (1999).Google Scholar
4. Fedders, P. A., Leopold, D. J., Chan, P. H., Borzi, R., and Norberg, R. E., Phys. Rev. Lett. 85, 401 (2000).Google Scholar
5. Norberg, R. E., Leopold, D. J., and Fedders, P. A., J. Non-Cryst. Solids 227–230, 124 (1998).10.1016/S0022-3093(98)00267-1Google Scholar
6. Norberg, R. E., Leopold, D. J., and Fedders, P. A., MRS Symp. Proc. 420, 475 (1996).10.1557/PROC-420-475Google Scholar
7. Su, Tining, Taylor, P. C., Chen, Shenlin, Crandall, R. S., and Mahan, A. H., J. Non-Cryst. Solids 266–269, 195 (2000).Google Scholar
8. Stutzmann, Martin, Brandt, Martin S., and Bayerl, Martin, J. Non-Cryst. Solids 266–269, 1 (2000).10.1016/S0022-3093(99)00871-6Google Scholar
9. Yamasaki, Satoshi and Isoya, Junichi, J. Non-Cryst. Solids 164–166, 169 (1993).Google Scholar
10. Isoya, J., Yamasaki, S., Okushi, H., Matsuda, A., and Tanaka, K., Phys. Rev. B 47, 7013 (1993).Google Scholar
11. Walle, Chris G. Van de, Phys. Rev. B 49, 4579 (1994). Hereafter referred to as VdW.Google Scholar
12.See Fedders, P. A., Drabold, D. A., Ordejón, Pablo, Fabricus, G., Śnchez-Portal, D., Artacho, Emilio, and Solar, J. M., Phys. Rev. B 60, 10594(BR) (2000).Google Scholar
13. Lanzavecchia, S. and Colombo, L., Europhys. Lett. 36, 295 (1996).Google Scholar
14. Buda, F., Chiarotti, G. L., Car, R., and Parrinello, M., Phys. Rev. B 44, 5908 (1991).Google Scholar
15. Street, R. A., Tsai, C. C., Kakalios, J., and Jackson, W. B., Philos. Mag. B56, 305 (1987).10.1080/13642818708221319Google Scholar
16. Beyer, Wolfhard in Semiconductors and Semimetals, Wielardson, R. K. and Weber, Eicke R., editors, Vol. 61 (Academic Press, 1999).Google Scholar
17. Fedders, P. A., Phys. Rev. B 61, 15797 (2000).10.1103/PhysRevB.61.15797Google Scholar
18. Fedders, P. A. and Carlsson, A. E., Phys. Rev. B 37, 8506 (1988).Google Scholar
19. Zafar, Sufi and Schiff, E. A., Phys. Rev. Lett. 66, 1493 (1991).10.1103/PhysRevLett.66.1493Google Scholar