Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-06T12:57:11.023Z Has data issue: false hasContentIssue false

Formation of ultra-shallow Ohmic contacts on n-Ge by Sb delta-doping

Published online by Cambridge University Press:  24 May 2011

K. Sawano
Affiliation:
Research Center for Silicon Nano-Science, Advanced Research Laboratories, Tokyo City University, 8-15-1 Todoroki, Setagaya-ku, Tokyo 158-0082, Japan
Y. Hoshi
Affiliation:
Research Center for Silicon Nano-Science, Advanced Research Laboratories, Tokyo City University, 8-15-1 Todoroki, Setagaya-ku, Tokyo 158-0082, Japan
K. Kasahara
Affiliation:
Department of Electronics, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
K. Yamane
Affiliation:
Department of Electronics, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
K. Hamaya
Affiliation:
Department of Electronics, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
M. Miyao
Affiliation:
Department of Electronics, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
Y. Shiraki
Affiliation:
Research Center for Silicon Nano-Science, Advanced Research Laboratories, Tokyo City University, 8-15-1 Todoroki, Setagaya-ku, Tokyo 158-0082, Japan
Get access

Abstract

We demonstrate low-resistivity Ohmic contacts for n-Ge with ultra-shallow junction. Using the impurity δ-doping techniques with Ge homoepitaxy on Ge(111) below 400 ºC, we can achieve a very abrupt doping profile within a nanometer-scale width. By introducing the δ-doping to atomically controlled metal/Ge contacts, the current-voltage characteristics clearly show Ohmic conductions owing to the effective tunneling through the Schottky barrier. This approach is promising for a formation technology of ultra-shallow source/drain contacts for scaled Ge devices.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chui, C. O., Gopalakrishnan, K., Griffin, P. B., Plummer, J. D., and Saraswat, K. C., Appl. Phys. Lett., 83, 3275 (2003).Google Scholar
2. Chui, C. O., Kulig, L., Moran, J., Tsai, W., and Saraswat, K. C., Appl. Phys. Lett., 87, 091909 (2005).Google Scholar
3. Satta, A., Janssens, T., Clarysse, T., Simoen, E., Meuris, M., Benedetti, A., Hoflijk, I., Jaeger, B. D., Demeurisse, C., and Vandervorst, W., J. Vac. Sci. Technol. B 24, 494 (2006).Google Scholar
4. Satta, A., Simoen, E., Duffy, R., Janssens, T., Clarysse, T., Benedetti, A., Meuris, M., and Vandervorst, W., Appl. Phys. Lett., 88, 162118 (2006).Google Scholar
5. Satta, A., D’Amore, A., Simoen, E., Anwand, W., Skorupa, W., Clarysse, T., Daele, B. V., and Janssens, T., Nucl. Instr. Meth. in Phys. Res B 257, 157 (2007).Google Scholar
6. Wündisch, C., Posselt, M., Schmidt, B., Heera, V., Schumann, T., Mücklich, A., Grötzschel, R., Skorupa, W., Clarysse, T., Simoen, E., and Hortenbach, H., Appl. Phys. Lett., 95, 252107 (2009).Google Scholar
7. Park, J.-H., Kuzum, D., Tada, M., and Saraswat, K. C., Appl. Phys. Lett., 93, 193507 (2008).Google Scholar
8. Ikeda, K., Yamashita, Y., Sugiyama, N., Taoka, N., and Takagi, S., Appl. Phys. Lett., 88, 152115 (2006).Google Scholar
9. Nishimura, T., Sakata, S., Nagashio, K., Kita, K., and Toriumi, A., Appl. Phys. Express 2, 021202 (2009).Google Scholar
10. Nakagawa, K., Miyao, M., and Shiraki, Y., Thin Solid Films 183, 315 (1989).Google Scholar
11. Miyao, M. and Nakagawa, K., Jpn. J. Appl. Phys. 33, 3791 (1994).Google Scholar
12. Nakagawa, K., Kimura, Y., and Miyao, M., J. Crystal Growth 175176, 481 (1997).Google Scholar
13. Nakagawa, K. et al. ., J. Crystal Growth 201202, 560 (1999).Google Scholar
14. Chiba, Y., Sakuraba, M., Tillack, B., Murota, J., Thin Solid Films 518 S231 (2010).Google Scholar
15. Dimoulas, A., Tsipas, P., Sotiropoulos, A., and Evangelou, E. K., Appl. Phys. Lett. 89, 252110 (2006).Google Scholar
16. Nishimura, T., Kita, K., and Toriumi, A., Appl. Phys. Lett. 91, 123123 (2007).Google Scholar
17. Lieten, R. R., Degroote, S., Kuijk, M., and Borghs, G., Appl. Phys. Lett. 92, 022106 (2008).Google Scholar
18. Nishimura, T., Kita, K., and Toriumi, A., Appl. Phys. Exp. 1, 051406 (2008).Google Scholar
19. Zhou, Y., Ogawa, M., Han, X., and Wang, K. L., Appl. Phys. Lett. 93, 202105 (2008).Google Scholar
20. Yamane, K., Hamaya, K., Ando, Y., Enomoto, Y., Yamamoto, K., Sadoh, T., and Miyao, M., Appl. Phys. Lett. 96, 162104 (2010).Google Scholar
21. Ando, Y., Hamaya, K., Kasahara, K., Kishi, Y., Ueda, K., Sawano, K., Sadoh, T., and Miyao, M., Appl. Phys. Lett. 94, 182105 (2009).Google Scholar
22. Kuzum, D., Pethe, A. J., Krishnamohan, T., Oshima, Y., Sun, Y., McVittie, J. P., Pianetta, P. A., McIntyre, P. C., and Saraswat, K. C., Tech. Dig. Int. Electron Device Meet 2007, 723.Google Scholar
23. Yang, Y.-J., Ho, W. S., Huang, C.-F., Chang, S. T., and Liu, C. W., Appl. Phys. Lett., 91, 102103 (2007).Google Scholar
24. Ushio, J., Nakagawa, K., Miyao, M., and Maruizumi, T., Phys. Rev. B 58, 3932 (1998).Google Scholar
25. Sze, S. M., Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981), pp. 270286.Google Scholar