Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-18T13:18:59.241Z Has data issue: false hasContentIssue false

Formation of Self-Assembled Nanometer-Scale InP Islands on Silicon Substrates

Published online by Cambridge University Press:  10 February 2011

A.S. Bakin
Affiliation:
Institut für Halbleitertechnik, Technische Universität Braunschweig, Hans-Sommer-Straße 66, D-38106 Braunschweig, Germany
D. Piester
Affiliation:
Institut für Halbleitertechnik, Technische Universität Braunschweig, Hans-Sommer-Straße 66, D-38106 Braunschweig, Germany
H.-H. Wehmann
Affiliation:
Institut für Halbleitertechnik, Technische Universität Braunschweig, Hans-Sommer-Straße 66, D-38106 Braunschweig, Germany
A.A. Ivanov
Affiliation:
Institut für Halbleitertechnik, Technische Universität Braunschweig, Hans-Sommer-Straße 66, D-38106 Braunschweig, Germany
A. Schlachetzki
Affiliation:
Institut für Halbleitertechnik, Technische Universität Braunschweig, Hans-Sommer-Straße 66, D-38106 Braunschweig, Germany
K.D. Becker
Affiliation:
Institut fur Festödrperchemie, Abteilung Physikalische Chemie, Technische Universität Braunschweig, Hans-Sommer-Straße 10, D-38106 Braunschweig, Germany
Get access

Abstract

Three-dimensional islands of InP have been reproducibly grown in the Stranski-Krastanow growth mode on Si (001) and (111) by using metal-organic vapor phase epitaxy in order to obtain nanometer-scale quantum dots. Atomic-force microscopy was used to determine the morphology of the samples and to evaluate the dimensions of the islands. Formation of three-dimensional islands with densities as high as 2.5×1010 cm−2 and small sizes have been observed. The evolution of island morphology is explained in terms of strain-relaxing mechanisms at the first stages of InP/Si heteroepitaxy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Ferrer, J.C., Peiro, F., Comet, A., and Morante, J.R., Appl. Phys. Lett. 69, 3887 (1996).Google Scholar
2 Omi, H. and Ogino, T., Appl. Phys. Lett. 71, 2163 (1997).Google Scholar
3 Lacombe, D., Ponchet, A., Frechengues, S., Drouot, V, Bertru, N., Lambert, B., and Corre, A. Le, Appl. Phys. Lett. 74, 1680 (1999).Google Scholar
4 Marchand, H., Desjardins, P., Guillon, S., Paultre, J.-E., Bougrioua, Z., Yip, R. Y.-F., and Masut, R.A., Appl. Phys. Lett. 71, 527 (1997).Google Scholar
5 Sopanen, M., Lipsanen, H. and Ahopelto, J., Appl. Phys. Lett. 67, 3768 (1995).Google Scholar
6 Wang, B., Zhao, F., Peng, Y., Jin, Z., Li, Y., and Liu, S., Appl. Phys. Lett. 72, 2433 (1998).Google Scholar
7 Sullivan, J.S., Evans, H., Savage, D.E., Wilson, M.R., and Lagally, M.G., J. Electron. Mater. 28, 426 (1999).Google Scholar
8 Lee, H., Yang, W., Sercel, P.C., and Norman, A.G., J. Electron. Mater. 28, 481 (1999).Google Scholar
9 Sharma, P.C., Alt, K.W., Yeh, D.Y., Wang, D., and Wang, K.L., J. Electron. Mater. 28, 432 (1999).Google Scholar
10 Tang, G.-P., Ph.D thesis, Fortschritt-Berichte 5/360, VDI Verlag, Düsseldorf, Germany, (1994).Google Scholar
11 Lubnow, A., Ph.D thesis, Fortschritt-Berichte 9/166, VDI Verlag, Düsseldorf, Germany, (1993).Google Scholar
12 Gerard, J.M., Genin, J.B., Lefebvre, J., Moison, J.M., Lebouche, N., and Barthe, F., J.Cryst. Growth 150, 351 (1995).Google Scholar
13 Leonard, D., Pond, K., and Petroff, P.M., Phys. Rev. B 50, 11687 (1994).Google Scholar
14 Ponchet, A., Corre, A. Le, Haridon, H.L, Lambert, B., and Salaün, S., Appl. Phys. Lett. 67, 1850 (1995).Google Scholar
15 Tang, G.-P., Lubnow, A., Wehmann, H.-H., Zwinge, G. and Schlachetzki, A., Jpn. J. Appl. Phys. 31, L1126 (1992).Google Scholar