Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-01T03:12:18.776Z Has data issue: false hasContentIssue false

Formation of Quantum Wires by Strain-Induced Lateral-Layer Ordering Process: Growth Mechanism and Device Applications

Published online by Cambridge University Press:  10 February 2011

K. Y. Cheng
Affiliation:
Department of Electrical and Computer Engineering and Microelectronics Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
K. C. Hsieh
Affiliation:
Department of Electrical and Computer Engineering and Microelectronics Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Get access

Abstract

GaxIn1−xAs and GaxIn1−xP quantum wire (QWR) arrays were grown by a single-step molecular beam epitaxy. Lateral Ga(In composition modulation perpendicular to the growth direction occurs spontaneously during the growth of (GaAs)m/(InAs)n or (GaP)m/(InP)n shortperiod superlattices on InP or GaAs substrates, respectively, by the strain-induced lateral-layer ordering (SILO) process, producing lateral quantum wells. This straightforward method employs standard on-axis (001)-oriented substrates, and requires no pre-growth substrate patterning, nor does it involve post-growth processing for the formation of QWRs. Both GaxIn1−xAs infrared (1.7 μm) lasers and GaxIn1−xP visible (0.7 μm) lasers with QWR active regions have been successfully fabricated. These lasers showed many unique features that have never been observed in quantum well lasers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kapon, E., Proc. IEEE, 80, 398 (1992).Google Scholar
2. Arakawa, Y. and Sakaki, H., Appl[. Phys. Lett., 40, 939 (982).Google Scholar
3. Yariv, A., Appl. Phys. Lett., 53, 1033 (1988).Google Scholar
4. Arakawa, Y., Vahala, K., and Yariv, A., Appl. Phys. Lett., 45, 950 (1984).Google Scholar
5. Kudo, K., Nagashima, Y., Tamura, S., Arai, S., Huang, Y., and Suematsu, Y., IEEE J. Photon. Technol. Lett., 5, 864 (1993).Google Scholar
6. Tsuchiya, M., Gaines, J. M., Yan, R. H., Simes, R. J., Holtz, P. O., Coldren, L. A., and Petroff, P. M., Phys. Rev. Lett., 62, 466 (1989).Google Scholar
7 Kapon, E., Yun, C. P., Hwang, D. M., Tamargo, M. C., Harbison, J. P., and Bhat, R., Proc. SPIE, 944, 80 (1988).Google Scholar
8. Tiwari, S., Pettit, G. D., Milkove, K. R., Davis, R. J., Woodall, J. M., and Liegoues, F., 1992 Tech. Digest of IEDM, 859 (1992).Google Scholar
9. Cheng, K. Y., Hsieh, K. C., and Baillargeon, J. N., Appl Phys. Lett., 60, 2892 (1992).Google Scholar
10. Chen, A. C., Moy, A. M., Pearah, P. J., Hsieh, K. C., and Cheng, K. Y., Appl. Phys. Lett., 62, 1359 (1993).Google Scholar
11. Chou, S. T., Hsieh, K. C., Cheng, K. Y. and Chou, L. J., J. Vac. Sci. Technol., B13, 650 (1995).Google Scholar
12. Stellini, E. M., Cheng, K. Y., Pearah, P. J., Chen, A. C., Moy, A. M., and Hsieh, K. C., Appl. Phys. Lett., 62, 458 (1993).Google Scholar
13. Chou, S. T., Cheng, K. Y., Chou, L. J., and Hsieh, K. C., Appl. Phys. Lett., 66, 2220 (1995).Google Scholar
14. Pearah, P. J., Chen, A. C., Moy, A. M., Hsieh, K. C., and Cheng, K. Y., IEEE J. Quantum Electron., QE–30, 608 (1994).Google Scholar
15. Chen, A. C., Moy, A. M., Cheng, K. Y., Chou, L. J., and Hsieh, K. C. (unpublished).Google Scholar
16. Hsieh, K. C. and Cheng, K. Y., Mat. Res. Soc. Symp. Proc., 379, 145 (1995).Google Scholar
17. Spencer, B. J., Voorhees, P. W., and Davis, S. H., J. Appl. Phys., 73, 4955 (1993).Google Scholar
18. Glas, F., J. Appl. Phys., 62, 3201 (1987).Google Scholar
19. Cheng, K. Y., Hsieh, K. C., Baillargeon, J. N., and Mascarenhas, A., Proceedings of the 18th International Symposium of GaAs and Related compounds (Inst. Phys. Conf. Ser., 120, London, 1992), p. 589.Google Scholar
20. Cassidy, D. T. and Adams, C. S., IEEE J. Quantum Electron., 25, 1156 (1989).Google Scholar
21. Lee, H., Biswas, D., Klein, M. V., and Morkoc, H., J. Appl. Phys., 75, 5040 (1994).Google Scholar
22. Dua, P., Cooper, S. L., Chen, A. C., and Cheng, K. Y., Proc. of 3rd Int. Symp. Ouantum Confinements: Wires and Dots, (The Electrochemical Society, Chicago, IL, 1995)Google Scholar
23. Chou, S. T., Cheng, K. Y., Chou, L. J., and Hsieh, K. C., J. Appl. Phys., 78, 6270 (1995).Google Scholar
24. Chen, A. C., Moy, A. M., Chou, L. J., Hsieh, K. C., and Cheng, K. Y., Appl. Phys. Lett., 66, 2694 (1995).Google Scholar
25. Kim, Y. -W., Mei, D. H., Lubben, D., Robertson, I., and Greene, J. E., J. Appl. Phys., 76, 1644 (1994).Google Scholar
26. Pearah, P. J., Chen, A. C., Moy, A. M., Hsieh, K. C., and Cheng, K. Y., J. Crystal Growth, 150, 293 (1995).Google Scholar
27. Corzine, S. W., Yan, R. -H., and Coldren, L. A., in Quantum well lasers, Edited by Zory, P. S. Jr., (Academic Press, Inc., New York, 1993), p. 52.Google Scholar
28. Asada, M., Miyamoto, T., and Suematsu, Y., Jpn. J. Appl. Phys., 24, L95 (1985).Google Scholar