Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-07-01T13:53:41.924Z Has data issue: false hasContentIssue false

The Formation of Laser Active Composite Films from Silicate Ceramics

Published online by Cambridge University Press:  15 February 2011

L. L. Beecroft
Affiliation:
Departments of Materials Science and Engineering, Cornell University, Ithaca, NY 14853
R. T. Leidner
Affiliation:
Departments of Materials Science and Engineering, Cornell University, Ithaca, NY 14853
C. K. Ober
Affiliation:
Departments of Materials Science and Engineering, Cornell University, Ithaca, NY 14853
D. B. Barber
Affiliation:
Electrical Engineering, Cornell University, Ithaca, NY 14853
C. R. Pollock
Affiliation:
Electrical Engineering, Cornell University, Ithaca, NY 14853
Get access

Abstract

Composite films containing solid state laser nanoparticles have been created which show optical amplification in the technologically important near IR range. The solid state laser materials studied, Cr-forsterite (Cr-Mg2SiO4) and Cr-diopside (Cr-CaMgSi2O6), were prepared using a dispersion polymerized polymer precursor. The nanoparticles produced during the polymer synthesis acted as size templates, creating fine crystalline powders of the Cr-forsterite and Crdiopside upon calcination. These fine powders were dispersed in a refractive index matched polymer matrix and cast as 5–10 μm thick films. The resulting composite containing Cr-forsterite showed optical amplification of 300 dB/m at 1.24 μm.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Beecroft, L. L., Barber, D. B., Ober, C. K., and Pollock, C. R., submitted to Advanced Materials, 1996.Google Scholar
2. Petricevic, V., Geyen, S. K., Alfano, R. R., Yamagishi, K., Anzai, H., and Yamaguchi, Y., Appl. Phys. Lett., 52, 1040 (1987).Google Scholar
3. Pollock, C. R., Fundamentals of Optoelectronics, (Irwin, Boston, 1995).Google Scholar
4. Beecroft, L. L. and Ober, C. K., Advanced Materials, 7, 1009 (1995).Google Scholar
5. Beecroft, L. L., Barber, D. B., Mass, J. L., Burlitch, J. M., Pollock, C. R., and Ober, C. K., Proc. ACS Div.: Polym. Mat.: Sci. and Eng., 73, 162 (1995).Google Scholar
6. Saric, K., Janovic, Z., and Vogl, O., Croatica Chemica Acta, 58, 57 (1985).Google Scholar
7. Lide, D. R., ed., CRC Handbook of Chemistry and Physics, (CRC Press, Inc., 1994), 472, 4–48, 4–137.Google Scholar
8. Petricevic, V., Gayen, S. K., and Alfano, R. B., Appl. Phys. Lett., 53, 2590 (1988).Google Scholar
9. Beecroft, L. L. and Ober, C. K., manuscript in preparation.Google Scholar
10. Mass, J. L., Burlitch, J. M., Markgraf, S. A., Higuchi, M., Dieckmann, R., Barber, D. B., and Pollock, C. R., accepted in J. Crystal Growth, (1996).Google Scholar