Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-18T06:32:58.430Z Has data issue: false hasContentIssue false

Formation of Highly-Uniform and Densely-Packed Arrays of GaAs Dots by Selective Epitaxy

Published online by Cambridge University Press:  28 February 2011

Charles S. Tsai
Affiliation:
California Institute of Technology, Department of Applied Physics, Mail Stop 128-95, Pasadena, CA 91125
Robert B. Lee
Affiliation:
California Institute of Technology, Department of Applied Physics, Mail Stop 128-95, Pasadena, CA 91125
Kerry J. Vahala
Affiliation:
California Institute of Technology, Department of Applied Physics, Mail Stop 128-95, Pasadena, CA 91125
Get access

Abstract

Formation of highly-uniform and densely-packed arrays of GaAs dots by selective epitaxy using diethylgallium-chloride and arsine is reported. The arrays of GaAs dots are imaged using atomic force microscopy (AFM). Accounting for the AFM tip radius of curvature, the smallest GaAs dots formed are 15-20 nm in base diameter and 8-10 nm in height with slow-growth crystal planes limiting individual dot growth. Completely selective GaAs growth within dielectric-mask openings at these small size-scales is also demonstrated. The uniformity of the dots within each array ranged from 6% for the larger dots to 16% for the smallest dots (normalized standard deviations of the areas of individual dots within each array).

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Cibert, J., Petroff, P. M., Dolan, G. J., Pearton, S. J., Gossard, A. C., and English, J. H., Appl. Phys. Lett. 49, 1275 (1986).Google Scholar
2 Kash, K., Scherer, A., Worlock, J. M., Craighead, H. G., and Tamargo, M. C., Appl. Phys. Lett. 49, 1043 (1986).Google Scholar
3 Temkin, H., Dolan, G. J., Panish, M. B., and Chu, S. N. G., Appl. Phys. Lett. 50, 413 (1986).Google Scholar
4 Leonard, D., Krishnamurthy, M., Reaves, C. M., Denbaars, S. P., and Petroff, P. M., Appl. Phys. Lett. 63, 3203 (1993).Google Scholar
5 Lebens, J. A., Tsai, C. S., Vahala, K. J., and Kuech, T. F., Appl. Phys. Lett. 56, 2642 (1990).Google Scholar
6 Galeuchet, Y. D., Rothuizen, H., and Roentgen, P., Appl. Phys. Lett. 58, 2423 (1991).Google Scholar
7 Nagamune, Y., Tsukamoto, S., Nishioka, M., and Arakawa, Y., J. Crystal Growth 126, 707 (1993).Google Scholar
8 Kuech, T. F., Goorsky, M. S., Tischler, M. A., Palevski, A., Solomon, P., Potemski, R., Tsai, C. S., Lebens, J. A., and Vahala, K. J., J. Crystal Growth 107, 116 (1991).Google Scholar
9 Kuech, T. F., Tischler, M. A., and Potemski, R., Appl. Phys. Lett. 54, 910 (1989).Google Scholar