Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T14:59:29.159Z Has data issue: false hasContentIssue false

The Formation of Cu3Si from Cu/a-Si Multilayers

Published online by Cambridge University Press:  10 February 2011

R. R. Chromik
Affiliation:
Department of Physics, Binghamton University, State University of New York Binghamton, NY 13902-6016
W. K. Neils
Affiliation:
Department of Physics, Binghamton University, State University of New York Binghamton, NY 13902-6016
E. J. Cotts
Affiliation:
Department of Physics, Binghamton University, State University of New York Binghamton, NY 13902-6016
Get access

Abstract

The kinetics of the formation of Cu3Si in Cu/a-Si diffusion couples have been investigated by means of differential scanning calorimetry and x-ray diffraction. Multilayered composites of average stoichiometry Cu3Si were prepared by sputter deposition with individual layer thicknesses varying in different samples between 2 and 100 nm. We observed diffusion limited growth of Cu3 Si upon annealing these diffusion couples below 500 K. Reaction constants were measured for a temperature range of 455 to 495 K for thicknesses of growing Cu3Si between 2.6 and 80 nm. The temperature dependence of the reaction constant, k2, was characterized as k2 = k0 exp(− Ea/kbT) with activation energy, Ea = 1.0 eV/atom and pre-factor, k0 = 1.9×10−3 cm2/s.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Echigoya, J., Satoh, T. and Ohmi, T., Acta Metall. Mater. 41, 229 (1992).Google Scholar
2. Li, J., Shacham-Diamand, Y. and Mayer, J.W., Mater. Sci. Rep. 9. 1 (1992).Google Scholar
3. Cros, A., Aboelfotoh, M.O. and Tu, K.N., J. Appl. Phys. 67, 3328 (1990).Google Scholar
4. Chang, C., J. Appl. Phys. 67, 566 (1990).Google Scholar
5. Hong, S.Q., Comrie, C.M., Russell, S.W. and Mayer, J.W., J. Appl. Phys. 70, 3655 (1991).Google Scholar
6. Stolt, L., D'Huerle, F.M. and Harper, J.M.E., Thin Solid Films 200, 147 (1991).Google Scholar
7. Becht, J.G.M., van Loo, F.J.J. and Metselaar, R., Reactivity of Solids 6, 45 (1988).Google Scholar
8. Ward, W.J. and Carroll, , J. Electrochem. Soc. 129, 227 (1982).Google Scholar
9. Veer, F.A., Kolster, B.H. and Burgers, W.G., Trans. Met. Soc. AIME 242, 669 (1968).Google Scholar
10. Onishi, M. and Muira, H., Trans. JIM 18, 107 (1977).Google Scholar
11. Murarka, S.P. and Hymes, S.W., Critical Reviews in Solid State and Materials Science 20, 87 (1995).Google Scholar
12. Pokela, P.J., Kwok, C.K., Raud, S. and Nicolet, M.A., Appl. Surface Science 53, 364 (1991).Google Scholar
13. Harper, J.M.E., Charai, A., Stolt, L., d'Huerle, F.M. and Fryer, P.M., Appl. Phys. Lett. 56, 2519 (1990).Google Scholar
14. Myers, S.M. and Follstaedt, D.M., J. Appl. Phys. 79, 1337 (1996).Google Scholar
15. Weber, G., Gillor, B. and Barret, P., Phys. Status Solidi A 75, 567 (1983).Google Scholar
16. Mukherjee, K.P., Bandyopadhyaya, J. and Gupta, K.P., Trans. Metall. Soc. AIME 245, 2335 (1993).Google Scholar
17. Solberg, J.K., Acta Crystallogr. Sec. A 34, 684 (1978).Google Scholar
18. Kasica, R.J. and Cotts, E.J., J. Appl. Phys. 82, 1488 (1997).Google Scholar
19. Kasica, R.J., Cotts, E.J. and Ahrens, R.G. in Thermodynamics and Kinetics of Phase Transformations edited by Im, J.S., Park, B., Greer, A.L., Stephenson, G.B. (Mater. Res. Soc. Proc. 398, Pittsburgh, PA 1996), pp. 301305.Google Scholar
20. Ciccariello, J.C., Poize, S. and Gas, P., J. Appl. Phys. 67, 3315 (1990).Google Scholar