Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-22T12:22:53.149Z Has data issue: false hasContentIssue false

Formation of Buried Two-Dimensional Electron Gas in Gaas by Si Ion Doping Using Mbe-Fib Combined System

Published online by Cambridge University Press:  21 February 2011

J. YANAGISAWA
Affiliation:
Department of Electrical Engineering, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan
H. Nakayama
Affiliation:
Department of Electrical Engineering, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan
F. Wakaya
Affiliation:
Department of Electrical Engineering, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan
Y. Yuba
Affiliation:
Department of Electrical Engineering, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan
K. Gamo
Affiliation:
Department of Electrical Engineering, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan Research Center for Extreme Materials, Osaka University, Toyonaka, Osaka 560, Japan
Get access

Abstract

0.1 and 30 keV Si2+ focused ion beams (FIB) were implanted in two types of GaAs, one of which is semi-insulating (s.i.) GaAs, while the other is grown by molecular beam epitaxy (MBE). Successive regrowth over the implanted surface was performed using MBE-FIB combined system, and the resistance was measured. It was found that for 100 eV Si2+ FIB implantation, the sample was nonconductive without a post annealing at 800°C. After the post annealing, however, the sample became conductive, and the resistance was the same order in magnitude as the sample fabricated using 30 keV Si + FIB irradiation. This suggests a potential of selective formation of Si δ-like doped layers in GaAs and GaAs/AlGaAs using a low-energy FIB.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Wakaya, F., Yuba, Y., Takaoka, S., Murase, K. and Gamo, K., Jpn. J. Appl. Phys. 32, 6242 (1993).Google Scholar
2 Takamori, A., Miyauchi, E., Arimoto, H., Bamba, Y. and Hashimoto, H., Jpn. J. Appl. Phys. 23, L599 (1984).Google Scholar
3 Kawano, A., Arimoto, H., Kitada, H., Endoh, A. and Fujii, T., Jpn. J. Appl. Phys. 30, L71 (1991).Google Scholar
4 Thompson, J. H., Ritchie, D. A., Jones, G. A. C., Linfield, E. H., Frost, J. E. F., Churchill, A. C., Smith, G. W., Lee, D., Houlton, M. and Whitehouse, C. R., Surface Sci. 267, 69 (1992).Google Scholar
5 Linfield, E. H., Jones, G. A. C., Ritchie, D. A., Hamilton, A. R. and Iredale, N., J. Crystal Growth 127, 41 (1993).Google Scholar
6 Ishibashi, T., Fischer, A., Wiech, A. D. and Ploog, K., Appl. Phys. Lett. 62, 513 (1993).Google Scholar
7 Itoh, M., Saku, T., Fujisawa, T., Hirayama, Y. and Tarucha, S., Jpn. J. Appl. Phys. 33, 771 (1994).Google Scholar
8 Sasa, S., Miller, M. S., Li, Y. J., Xu, Z., Ensslin, K. and Petroff, P. M., Appl. Phys. Lett. 57, 2259 (1990).Google Scholar
9 Arimoto, H., Kawano, A., Kitada, H., Endoh, A. and Fujii, T., J. Vac. Sci. Technol. B9, 2675 (1991).Google Scholar
10 Miyake, H., Yuba, Y., Gamo, K., Namba, S., Mimura, R. and Aihara, R., Jpn. J. Appl. Phys. 27, L2037 (1988).Google Scholar
11 Stoffel, N. G., Schwarz, S. A., Pudensi, M. A. A., Kash, K., Florez, L. T., Harbison, J. P. and Wilkens, B. J., Appl. Phys. Lett. 60, 1603 (1992).Google Scholar
12 Wakaya, F., Matsubara, T., Yanagisawa, J., Yuba, Y., Takaoka, S., Murase, K. and Gamo, K., to be published in Microelectric Engineering.Google Scholar
13 Wakaya, F., Matsubara, T., Nakayama, H., Yanagisawa, J., Yuba, Y., Takaoka, S., K. Murase and K. Gamo, Submitted to Physica B.Google Scholar