Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-27T01:14:00.908Z Has data issue: false hasContentIssue false

The Formation of Abrupt N+ Doping Profiles Using Atomic Hydrogen and Sb During Si MBE

Published online by Cambridge University Press:  10 February 2011

P.E. Thompson
Affiliation:
Code 6812, Naval Research Laboratory, Washington, DC 20375-5347 (202)404-8541, (202)404-7194, thompson@estd.nrl.navy.mil
C. Silvestre
Affiliation:
ASEE Post-Doctoral Fellow, Naval Research Laboratory, Washington, DC 20375-5347
M. Twigg
Affiliation:
Code 6812, Naval Research Laboratory, Washington, DC 20375-5347 (202)404-8541, (202)404-7194, thompson@estd.nrl.navy.mil
G. Jernigan
Affiliation:
Code 6812, Naval Research Laboratory, Washington, DC 20375-5347 (202)404-8541, (202)404-7194, thompson@estd.nrl.navy.mil
D.S. Simons
Affiliation:
NIST, Gaithersburg, MD 20899, USA
Get access

Abstract

Previously, atomic hydrogen has been shown to be effective in reducing the segregation of Sb on Si(100) during solid source molecular beam epitaxy growth. In this work we have investigated the electrical activation of the Sb. Using Hall measurements, spreading resistance profilometry, and secondary ion mass spectrometry, we have demonstrated that the co-deposition of atomic hydrogen during Sb doping of Si at 500°C produced well-defined doping spikes. Comparing the sheet carrier concentration obtained by Hall measurements to the Sb atomic concentration obtained by SIMS, the overall activation of the Sb was greater than 50%.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Horn-von Hoegen, M., LeGoues, F. K., Copel, M., Reuter, M. C., and Trump, R. M., Phys. Rev. Lett., 67 (1991) 1130.Google Scholar
2. Hobart, K. D., Godbey, D. J., Thompson, P. E., and Simons, D. S., Appl. Phys. Lett., 63 (1993) 1381.Google Scholar
3. Hobart, K. D., Godbey, D. J., Twigg, M. E., Fatemi, M., Thompson, P. E.. and Simons, D. S., Surf. Sci., 334 (1995) 29.Google Scholar
4. Thompson, P. E., Silvestre, C., Twigg, M., Jernigan, G., and Simons, D., accepted for publication in Thin Sol. Films.Google Scholar
5. Sakai, A. and Tasumi, T., Appl. Phys. Lett., 64 (1994) 52.Google Scholar
6. Nakagawa, K., Nishida, A., Kimura, Y., and Shimada, T., Jpn. J. Appl. Phys., 33 (1994) L1331.Google Scholar
7. Ohta, G., Fukatsu, S., Ebuchi, Y., Hattori, T., Usami, N., and Shiraki, Y., Appl. Phys. Lett., 65 (1994) 2975.Google Scholar
8. Nakagawa, K., Nishida, A., Kimura, Y., and Shimada, T., J. Cryst. Growth, 150, (1995) 939.Google Scholar
9. Okada, M., Shimizu, T., Ikeda, H., Zaima, S., and Yasuda, Y., Appl. Surf Sci., 113/114 (1997) 349.Google Scholar
10. Kahng, S.-J., Park, J. Y., Booh, K. H., Lee, J., Khang, Y., and Kuk, Y., J. Vac. Sci. Technol., A15 (1997) 927.Google Scholar
11. Richmond, E. D., Pellegrino, J. G., Twigg, M. E., Qadri, S., and Duffy, M. T., Thin Solid Films, 192 (1990) 287.Google Scholar
12. Sutoh, A., Okada, Y., Ohta, S., and Kawabe, M., Jpn. J. Appl. Phys., 34 (1995) L1379.Google Scholar
13. Thompson, P. E., Twigg, M. E., Godbey, D. J., Hobart, K. D., and Simons, D. S., J. Vac. Sci. Technol., B11 (1993) 1077.Google Scholar