Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-13T10:32:32.576Z Has data issue: false hasContentIssue false

Formation of a New Blue-Shift Emission in Highly Be-Doped GaAs Grown by Molecular Beam Epitaxy

Published online by Cambridge University Press:  26 February 2011

Yunosuke Makita
Affiliation:
Electrotechnical Laboratory, Umezono 1–1–4, Tsukuba-shi, Ibaraki-ken 305, Japan
Masahiko Mori
Affiliation:
Electrotechnical Laboratory, Umezono 1–1–4, Tsukuba-shi, Ibaraki-ken 305, Japan
Nobukazu Ohnishi
Affiliation:
Institute of Fundamental Analysis Co., LTD., Yoyogi 3–24–3, Shibuya-ku, Tokyo 151, Japan
Paul Phelan
Affiliation:
Electrotechnical Laboratory, Umezono 1–1–4, Tsukuba-shi, Ibaraki-ken 305, Japan
Takashi Taguchi
Affiliation:
Nippon Soken Inc. Co., Iwaya 14, Shimosumi, Nishio-shi, Aichi-ken 445, Japan
Yoshinobu Sugiyama
Affiliation:
Electrotechnical Laboratory, Umezono 1–1–4, Tsukuba-shi, Ibaraki-ken 305, Japan
Munecazu Tacano
Affiliation:
Electrotechnical Laboratory, Umezono 1–1–4, Tsukuba-shi, Ibaraki-ken 305, Japan
Get access

Abstract

Photoluminescence measurements of Be-doped GaAs, grown by molecular beam epitaxy, were carried out at low temperature as a function of acceptor concentration. Results revealed that besides the well-defined emission, [g-g], which is exclusively relevant to acceptor impurities, an additional specific emission, temporarily denoted by [g-g]α is formed near the band-edge, when the concentration of acceptors exceeds 1×1019 cm−3:. From the viewpoint of application it was suggested that also in case of acceptors, photoluminescence spectra can be practically used for the precise determina-tion the acceptor concentration.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Makita, Y., Takeuchi, Y., Ohnishi, N., Nomura, T., Kudo, K., Tanaka, H., Lee, H-C., Mori, M., and Mitsuhashi, Y., Appl. Phys. Lett., 49, 1184 (1986).Google Scholar
2.Mori, M., Makita, Y., Okada, Y., Ohnishi, N., Mitsuhashi, Y., Tanaka, H., and Matsumori, T., J. Appl. Phys., 62, 3212 (1987).Google Scholar
3.Makita, Y., Nomura, T., Yokota, M., Matsumori, T., Izumi, T., Takeuchi, Y., and Kudo, K., Appl. Phys. Lett., 47, 623 (1985).Google Scholar
4.Makita, Y., Yokota, M., Nomura, T., Tanoue, H., Takayasu, I., Kataoka, S., Izumi, T., and Matsumori, T., Nucl. Instrum. Methods, B7/8, 433 (1985).Google Scholar
5.Makita, Y., Nomura, T., Yokota, Y., Kudo, K., and Takeuchi, Y., Nucl. Instr. and Meth., B15, 765 (1986).Google Scholar
6.Takeuchi, Y., Makita, Y., Kudo, K., Nomura, T., Tanaka, H., Irie, K., and Ohnishi, N., Appl. Phys. Lett., 48, 59 (1986).Google Scholar
7.Ohnishi, N., Makita, Y., Irie, K., Kudo, K., Nomura, T., Tanaka, H., Mori, M., and Mitsuhashi, Y., J. Appl. Phys., 60, 2502 (1986).Google Scholar
8.Nomura, Y., Makita, Y., Irie, K., Ohnishi, N., Kudo, K., Tanaka, H., and Mitsuhashi, Y., Appl. Phys. Lett., 48, 1745 (1986).Google Scholar
9.Makita, Y., Nomura, T., Kudo, K., Irie, K., Ohnishi, N., Takeuchi, Y., Tanaka, H., Tanoue, H., and Mitsuhashi, Y., J. Appl. Phys., 60, 442 (1986).Google Scholar
10.Kunzel, H., and Ploog, K., Appl. Phys. Lett., 37, 416 (1980).Google Scholar
11.Scott, G.B., Duggan, G., Dawson, P., and Weimann, G., J. Appl. Phys. 52, 6888 (1981).Google Scholar
12.Kudo, K., Makita, Y., Takayasu, I., Nomura, T., Kobayashi, T., Izumi, T., and Matsumori, T., J. Appl. Phys., 59, 888 (1986).Google Scholar
13.Heim, U., and Hiesinger, P., Phys. Status Solidi, (b)66, 461 (1974).Google Scholar
14.Bebb, H.B., and Williams, E.W., in Semiconductors and Semimetals Vol.8, edited by Williardson, R.K., and Beer, A.C. (Academic Press, New York, 1972), P.181.Google Scholar
15.Ohnishi, N., Makita, Y., Mori, M., Irie, K., Takeuchi, Y., and Shigetomi, S., J. Appl. Phys., 62,1833 (1987).Google Scholar