Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-27T03:39:41.740Z Has data issue: false hasContentIssue false

The Formation and Annealing of Amorphous Layers of Al2O3

Published online by Cambridge University Press:  28 February 2011

G. C. Farlow
Affiliation:
Wright State University, Dayton, OH
P. S. Sklad
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN Metals and Ceramics Divison, ORNL
C. W. White
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN Solid State Division, ORNL
C. J. McHargue
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN Metals and Ceramics Divison, ORNL
B. R. Appleton
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN Solid State Division, ORNL
Get access

Abstract

The critical dose for formation of an amorphous layer of Al2O3 by ion irradiation at 77 K has been determined. It is found to lie between 2 and 3 × 1015/cm2 if the sample is irradiated near the <0001> axis of the substrate and is found to lie in the neighborhood of 2 × 1016/cm2 if the irradiation is near the <1210> axis. The amorphous layers are found to recrystallize epitaxially if annealed at 1190 degrees C and to form a metastable microstructure upon annealing at 800 degrees C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Matzke, Hj. and Whitton, J. L., Can J. Phys. 44, 995 (1966).Google Scholar
[2] Wefers, K. and Bell, G. M., Technical Report no. 19, Alcoa Research Labs, Pittsburgh, Pa., p.43 (1972).Google Scholar
[3] Freiser, R. F., J. Electrochemical Soc. 113 357 (1966),Google Scholar
Appl. Spectrosc. 29 185 (1975).Google Scholar
[4] Brueesch, P., Koetz, R., Neff, H., and Pietronero, L., Phys. Rev. B29 4691 (1984).Google Scholar
[5] Jeck, C. and Kelly, R., J. Phys. Chem. Sol. 30 465 (1969).Google Scholar
[6] Naguib, H. M., Singleton, J. F., Grant, W. A. and Carter, G., J. Mat. Sci. 8 1633 (1973).Google Scholar
[7] Rechtin, M. D., Rad Eff. 42 129 (1979).CrossRefGoogle Scholar
[8] Naguib, H. M., and Kelly, R., Rad. Eff. 25 1 (1975).CrossRefGoogle Scholar
[9] McHargue, C. J., Naramoto, H., Appleton, B. R., White, C. W., Williams, J. M., Sklad, P. S., and Angellini, M. P., in Emerging Process and Methods for High Technology Ceramics, (Plenum Publishing Co., New York, (1984) pp 519532.CrossRefGoogle Scholar
[10] Naramoto, H., White, C. W., Williams, J. M., McHargue, C. J., Holland, O. W., Abraham, M. M., and Appleton, B. R., Nucl Instr. and Meth. 201 /202, 1159 (1983).Google Scholar
[11] Naramoto, H., White, C. W., Williams, J. M., McHargue, C. J., Holland, O. W., Abraham, M. M., and Appleton, B. R., J. App. Phys. 54, 683 (1983).Google Scholar
[12] Burnet, P. J. and Page, T. F., J. Mat. Sci. 19, 845 (1984).Google Scholar
[13] Hioki, T. A., Itoh, A., Nodra, S., Doi, H., Kawamoto, J., Kamigiatoa, O., Nucl. Inst. and Meth. B7 /8, 521 (1985).CrossRefGoogle Scholar
[14] White, C. W., Farlow, G. C., McHargue, C. J., Sklad, P. S., Angellini, M. P., Appleton, B. R., Nucl. Instr. and Meth. B7 /8, (1985).Google Scholar
[15] McHargue, C. J., Farlow, G. C., White, C. W., Williams, J. M., Appleton, B. R., Naramoto, H., Mat. Sci and Eng. 69 541 (1985).Google Scholar
[16] Burnett, P. J. and Page, T. F. J. Mat. Sci 19, 3524 (1985).Google Scholar